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Estimating Food Waste at the Individual

Household Level ∗

Yang Yu and Edward C. Jaenicke �

Abstract

We estimate food waste at the individual household level indirectly using a stochastic

production frontier approach. The estimated average percentage of waste is about 30%-

32%. In addition to a baseline model, we also develop two models that tackle the issue

of missing information on physical activities�one model uses proxy and instrument

variables, and the other applies data imputation technique. Based on the results, we

are able to explore the relationship between food waste and important demographic

variables, and we �nd that household food insecurity, SNAP participation, and larger

household sizes are associated with less food waste, whereas healthy diet practices and

higher income lead to more waste.

Keywords: Food waste, Stochastic frontier, Household production.

1 Introduction

As a global economic and environmental problem, unnecessary food waste deserves attention

from researchers in academic and government institutions, as well as nonpro�t organizations.

Institutions such as the USDA's Economic Research Service (USDA-ERS) and the National
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Resources Defense Council (NRDC) have reported aggregate food waste on the national level

(Buzby et al., 2014; Leib et al., 2013; Muth et al., 2011). Their annual estimates of food

waste range from 30% to 40% of the total food supply in U.S., which is about $120-160

billion in value.

The estimates in these reports attempt to document the importance of food waste. More

generally, scholarly research papers on food waste can arguably be classi�ed into the follow-

ing four types: (i) measurement of aggregate level estimates of percentage waste or critiques

of these estimates (Bellemare et al., 2017; Buzby and Guthrie, 2002; Buzby et al., 2009,1;

Garrone et al., 2014; Leib et al., 2013; Muth et al., 2011; Quested and Parry, 2011); (ii) at-

tempts to identify reasons for household wasting behavior based on survey data or behavioral

experiments (Ne� et al., 2015; Porpino et al., 2015; Qi and Roe, 2016; Reynolds et al., 2014;

Secondi et al., 2015; Stefan et al., 2013; Wilson et al., 2017); (iii) impact on environment

and sustainable growth, including greenhouse gas emissions from decomposition of wasted

food (Beretta et al., 2013; Chapagain and James, 2011; Quested and Parry, 2011; Venkat,

2011); and (iv) theoretical supply-chain analysis of perishable goods by operational research

methods (Akçay et al., 2010; Van Donselaar and Broekmeulen, 2012; Wang and Li, 2012).

Recently, Bellemare et al. (2017) take aim at categories (i) and (iv) by proposing that

de�nitions of food waste and e�orts to measure it need to better account for what is truly

wasted versus what is merely diverted in the supply chain. Their de�nition implies that �the

cost of food waste is equal to total value of the food that goes to the land�ll at each stage of

the supply chain� (Bellemare et al., 2017). While e�orts like these can create better precision

when discussing or estimating food waste, and better linkages across categories of food-waste

research, they do not address one fairly glaring gap in the research. Despite the importance

of this topic and the emerging body of literature, we have not seen anyone successfully

estimates food waste at the individual household level. Consequently, little is known about

the role that heterogeneous demographics across households play in determining food waste.

One reason for this gap is data: In general, there is little or no observable micro-level data
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on food waste at the individual household level. Therefore estimating food waste at such a

scale has been a di�cult task.

In this paper, we propose a novel, indirect way to overcome the data obstacle. Instead

of attempting to directly measure food waste, we start by employing a household produc-

tion function in which food waste is considered as an ine�ciency component and estimate

the waste indirectly. Speci�cally, we consider the household food consumption as a process

that converts food inputs into chemical energy that meets the requirement of human body's

metabolic process and additional energy demand from physical activities. This production

function tells us, from a nutrition science perspective, how various food-group contents are

transformed into energy expenditure. The speci�c econometric technique is based on ma-

ture research methods of stochastic frontier analysis that typically investigate production

e�ciency analysis. Within the stochastic production framework, we also develop one of the

�rst empirical applications of instrumental variables method in this literature using Limited

Information Maximum Likelihood (LIML).

Aside from the scienti�c foundations that inspire our model, another novelty that sets

our paper apart from the existing research is our choice of directly measurable quantities,

e.g., energy requirement and food purchases. These measurements are made feasible by

utilizing the USDA's National Household Food Acquisition and Purchase Survey (FoodAPS).

For a sample of 4,826 households, FoodAPS provide reasonably complete information on

(i) household demographic variables, including income, education, and health outcomes,

(ii) biological measures of each household member, and (iii) detailed data, including food

categories, food quantities, and nutrition information, on food purchased for at-home and

away-from-home consumption, for a period of seven days.

Our �rst model considers a stochastic production of nine groups of food inputs. The

distributional assumption is normal�half-normal, with the variance of the ine�ciency con-

ditioned on three household-level demographic variables�income, self-reported quality of diet,

and self-report, survey-based measurement of household food insecurity. Our second model
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adds a proxy variable and an instrumental variable for the household's physical activities,

while in the third and �nal model, we impute physical activity levels using the National

Health and Nutrition Examination Survey (NHANES).

Our estimates show that the average amounts of food wasted at the household level are

31.9%, 30.4%, and 30.1% in the three models. By adding physical activities into the model,

the waste estimates are slightly decreased by about 1.5%-2%. In addition, we examine how

household-speci�c attributes explain the variation of our food-waste estimates. We �nd that

food insecurity and SNAP participation are associated with less food waste, while healthy

diet practices and higher income lead to more household-level food waste. An examination

of the data con�rms our hypothesis� healthier diets include signi�cantly larger shares of

perishable fresh produce, which adds to food waste. Furthermore, larger households achieve

better food management and therefore less waste. These results allow us to further investi-

gate the feasibility and e�ectiveness of possible food-waste prevention policies that are aimed

at particular food types, retail environment, and, more importantly, at particular household

types.

The rest of the paper is organized as follows: Section 2 presents model speci�cation and

econometric methods. Section 3 provides detailed discussions on the data and main results.

Section 4 conducts several robustness checks on choice of variables, and Section 5 concludes

the paper.

2 Model and Estimation

2.1 Baseline Model (Model 1)

In most cases, directly measuring food waste is not feasible due to the di�culty of track-

ing and recording. More practical approaches would consider indirect implications of food

waste and trace back to its source. Our model takes this direction. We model the household

food consumption as a production process that converts food inputs into chemical energy
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that meets the requirement of human body's metabolic process and additional energy de-

mand from physical activities. We then treat the lower-than-predicted output or production

ine�ciency as a consequence of uneaten food, taking heterogeneous demographics into con-

sideration. Thus, uneaten food, indirectly measured, becomes our operational de�nition of

household-level food wasted1.

Household h's production process is assumed to take the form in equation (1). The

output, Y (bh, PAh), is a function that takes into account of household members' biological

measures and physical activities. The vector bh contains every individual's weight, height,

age, and gender that serve as a means to capture basic metabolism rate. And PAh represents

the physical activities. The production technology F (xh, dh) is a function of food input

vector xh, measured either in weight or calorie contents, and a set of household demographic

variables dh that determine ine�ciency (food waste).

Y (bh, PAh) = F (xh, dh) (1)

The ideal choice of the functional form of Y (bh, PAh) would be one that exhibits both

scienti�c basis and intuitive interpretation. If we assume, as in Hall et al. (2009), that

each individual maintained a state of energy balance during the survey period, then a nat-

ural starting point of Y (·) would be the sum of the total energy expenditures across all

household members. The most commonly used method in medical research to calculate to-

tal expenditure is based on the Basal Metabolic Rate (BMR) and Physical Activity Level

(FAO/WHO/UNU, 1985; Institute of Medicine, 2005; Scrimshaw et al., 1996). The BMR is

the amount of energy required to maintain basic body functioning, calculated through the

revised Harris-Benedict Equation using weight, height, age, and gender (Roza and Shizgal,

1984)2. Typically, BMR accounts for 65 to 75% of an individual's total energy expenditures

(Institute of Medicine, 2005). The Physical Activity Level is a multiplier, ranging from 1

1Note that this operational de�nition ignores the main points raised by Bellemare et al. (2017), namely
that some portion of this uneaten food may be diverted to a productive use instead of ending up in a land�ll.

2The equations are provided in the appendix.
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to 2.5, that represents the ratio of total energy expenditure to BMR. It includes thermal

e�ect of food and additional energy needed to perform daily activities and exercises such

as household task, walking, and cycling. For example, suppose a person's BMR is 70% of

his/her total energy expenditure, the physical activity level is then 1/0.7 ≈ 1.43.

Let us denote yh(bh) as the total BMR of all members in household h, and PAh as

the household average physical activity level, and propose the following speci�cation for

Y (bh, PAh):

Y (bh, PAh) = yh(bh) · PAh (2)

Note that both yh and PAh are at the household level. Ideally, we would calculate

total energy expenditure for each individual before aggregating. Since FoodAPS does not

provide information on physical activities, this speci�cation allows us to rely on yh as the

operational measure of output after taking logarithm. In the baseline model, we impose

distributional assumptions on PAh to complete the speci�cation. In the second model, a

proxy variable for PAh will be provided, as well as an instrumental variable to cope with

potential endogeneity of the proxy. However, this aggregation concern is resolved in our

third model when we impute values of physical activity for each household member using

information in NHANES data.

The full speci�cation of the baseline model (Model 1) is an extension of the Stochas-

tic Frontier model (Aigner et al., 1977; Fried et al., 2008; Jondrow et al., 1982). Denote

xh = (x1,h, x2,h, ...xI,h)
′ as a vector of amount of group i food, in weight or calorie con-

tent, purchased by this household3. We formulate the production technology F (xh, dh) in

the translog form where vh is the white noise and uh is production ine�ciency due to food

waste:

3Our main results in Section 3 are based on weight (grams). The calorie-content-based estimation is
presented in the robustness check in Section 4.
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log yh = α0 +
I∑
i=1

αi log xi,h +
I∑
i=1

∑
j≤i

βi,j log xi,h log xj,h + vh − uh (3)

Note that the output was originally log Y (bh, PAh) = log yh + logPAh. Hence there was

a − logPAh term on the right-hand side of equation (3). In Model 1, we tackle the issue

of missing information on physical activities by assuming that − logPAh is independent of

all the explanatory variables and its population distribution is completely captured by the

distribution of α0 and vh
4. However, in case this assumption fails, there lacks mechanism to

strictly prevent the impact of the missing variable on the predicted value of food waste. The

issue will be addressed in Model 2 and Model 3.

As usually assumed in normal�half-normal stochastic frontier models, the white noise vh

is drawn from a normal distribution N(0, σ2
v). In addition, the ine�ciency term, uh, is drawn

from a half-normal distribution N+(0, σ2
uh

) and is heteroskedastic:

σ2
uh

= exp(γ0 + γ′dh)

dh is a set of demographic variables that may a�ect food wasting behavior. It is note-

worthy that σ2
uh

does not only determine the variance of uh but also its mean. When a

demographic variable in dh results larger σ2
uh
, it induces more food waste, on average. In

addition, we do not impose restrictions on the parameters�α, β, and γ's since we need not

assume this production function to be homogeneous or concave. Hence typical issues in-

volved with translog, e.g., monotonicity and global concavity, do not undermine the validity

of the results.

Commonly used estimation approaches for stochastic frontier models are the corrected

OLS and maximum likelihood. We choose the later as it better �ts our purpose of extending

the model to accommodate proxy and instrumental variables in Model 2 which uses Limited

Information Maximum Likelihood (LIML). Since the white noise vh and the ine�ciency term

4As discussed in Section 2.4, the logarithm of imputed physical activity levels approximate a normal
distribution, yet negatively skewed.
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uh are not disentangled before the estimation, the likelihood function is based on εh = vh−uh.

Its density can be derived straightforwardly from the independence assumption between vh

and uh , and a change of variable integration:

fεh(εh) =
2

σh
φ(
εh
σh

)Φ(−λhεh
σh

)

where σ2
h = σ2

v +σ2
uh

and λh = σuh/σv. φ(·) and Φ(·) are density and cumulative distribu-

tion functions of the standard normal distribution, respectively. The maximum likelihood is

then performed on
∑

h log fεh(εh) to obtain parameter estimates (α̂0, α̂, γ̂0, γ̂, σ̂
2
v). Interme-

diate household-speci�c parameters σ̂2
uh
, σ̂2

h, and λ̂h are then calculated for each observation.

The translog speci�cation in equation (3) is a �exible functional form that is adequate

in most cases. Nonetheless, as we use the household total energy expenditure as the output,

one would wonder if we can simply treat the total calorie content from all food groups as the

input, that is log yh = α0 + α1 log(total calories) + vh − uh5. This single-input production

su�ers from several weaknesses due to its excessive simpli�cation. First, aggregating calorie

values of food products based on their nutrition labels have been criticized for ignoring

other substantial factors such as food composition (Trivedi, 2009). Food digestion itself

requires energy (the thermal e�ect of food) which typically accounts for about 10% of total

energy expenditure (McArdle et al., 1986). Di�erent types of food take di�erent amounts of

energy to digest, even when they contain the same calorie content on the nutrition labels.

For instance, protein-intense food generates more heat in postprandial thermogenesis than

carbohydrate and lipids-intense food, thereby provides less �e�ective� chemical energy that

is used by the body (Johnston et al., 2002). Consequently, calorie contents from di�erent

types of food are not perfect substitutes, hence not linearly additive. Finally, dividing food

into categories allows a closer examination on the impact of food composition on food waste.

For instance, our results show that more consumption of fruit and vegetables is associated

with signi�cantly more food waste. For the reasons provided above, we do not suggest the

5This speci�cation yields a slightly higher estimate of average food waste at about 40%.
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use of the overly simpli�ed single-input model.

2.2 Percentage Food Waste

Our primary goal is to provide an estimate of percentage food waste at the individual house-

hold level. The idea is to transform the output distance function into an input distance

function. This task can be e�ciently accomplished once we have an estimate of the out-

put ine�ciency term ûh for each household. Note that since the dependent variable is the

logarithm of total household BMR, ûh also represents the approximate percentage waste in

household BMR. The closed form prediction of uh post-estimation is well established in the

stochastic frontier literature (for example, Jondrow et al. (1982)). The solution is given as

the following, where b̂h = ε̂hλ̂h/σ̂h:

ûh = E(uh|ε̂h)

=
σ̂uhσ̂v
σ̂h

[
φ(b̂h)

1− Φ(b̂h)
− b̂h] (4)

Recall that the household production function is given in equation (3). For exploratory

purpose, let us assume that, for household h, food from all I groups are wasted in the same

proportion, δh. Then we have the following relationship:

I∑
i=1

αi log xi,h +
I∑
i=1

∑
j≤i

βi,j log xi,h log xj,h − uh

=
I∑
i=1

αi log(1− δh)xi,h +
I∑
i=1

∑
j≤i

βi,j log(1− δh)xi,h log(1− δh)xj,h

(5)

On the second line, the −uh term is transformed into a multiplication factor (1− δh) on

each xi,h
6. Rearrangements of the equation results the quadratic solutions for log(1− δh):

6Similar transformation is used in Reinhard et al. (1999) for a single-input case, whereas Kurkalova and
Carriquiry (2003) considers transformation for multiple inputs in a Cobb-Douglas model. Alternatively,
Kumbhakar and Tsionas (2006) provide an approach that directly formulates input-ine�ciency therm δh as
a random variable and uses a simulated ML estimation.

9



DRAFT: Do not cite or quote without the authors' permission.

log(1− δh) =
−Bh ±

√
B2
h − 4ACh

2A

where A =
∑I

i=1

∑
j≤i βi,j, Bh =

∑I
i=1 αi+

∑I
i=1

∑
j≤i βi,j(log xi,h+log xj,h), and Ch = uh.

This gives us two sets of predicted food waste as a result of quadratic solutions. Even though

we did not impose any theoretical restrictions on parameters ex ante, only one of them makes

economic sense: log(1 − δh) = (−Bh +
√
B2
h − 4ACh)/2A. The reason is that we expect a

positive correlation between ûh and δ̂h�more output ine�ciency implies more input waste. A

simple veri�cation through partial derivatives proves that the other solution gives a negative

relationship between ûh and δ̂h.
7

The predicted percentage food waste for each household, δ̂h, is then calculated based on

parameter values of α̂ and β̂, the predicted output ine�ciency ûh, and the observation-level

food purchase xi,h's:

% food waste = δ̂h = 1− exp

−B̂h +
√
B̂2
h − 4ÂĈh

2Â

 (6)

This estimate sets our study apart from the existing research on food waste for several

reasons. First and foremost, by our knowledge, this is the �rst study that provides individual

household-level estimates of food waste. Moreover, it opens a channel to conducting post-

estimation analysis on sub-group comparisons based on various demographic measures, as

well as implications for waste prevention policies that are aimed at particular food types and

retail environment.

2.3 Physical Activities � Proxy and Instrumental Variables (Model

2)

In this section, we turn to the issue of missing information on physical activities (PAh).

From an energy expenditure perspective, Archer et al. (2016) suggest to consider physical

7In fact, our estimation shows that the other set of the solutions yields values of δ̂h in�nitely close to 1.
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activities in estimating food waste to reach more accurate results. From a technical point

of view, if the omitted variable in Model 1 is normally distributed and independent of other

explanatory variables including those determining σ2
uh , then our parameter estimates are

consistent. On the other hand, if PAh fails to meet the conditions, it poses inconsistent

parameter estimates that would likely generate biased food waste estimates. Whether the

percentage food waste is overestimated or underestimated is a rather complex matter that

involves many factors including the signs of correlation and the distributional properties of

− logPAh. We do not explicitly explore the econometric mechanism that determine the bias

in this paper. Nonetheless, the results of Model 2 and 3 suggest that Model 1 overestimates

waste by about 1.5%.

In the second model (Model 2), we propose a proxy variable for the missing variable

PAh. Though FoodAPS does not contain direct measures of physical activities, it provide

some highly indicative variables. One example is the employment status of all working-age

individuals. It is a discrete variable of four levels, with 1 meaning unemployed while not

searching for a job, and 4 representing employed and working regularly. For each household,

we take the average across all working-age members and normalize it to a value between 0

and 1. The rationale of using employment as a proxy is that employed people generally have

a higher level of mandatory physical activities. Moreover, among the unemployed individuals

in FoodAPS, about 44% is due to retirement, health issues, or disability, who are likely to

have less physical activity than those employed8.

The validity of employment as a proxy is further supported by the NHANES 2011-2012

data. This dataset follow the same coding rule of employment as in FoodAPS. In addition,

NHANES contains valuable records on physical activities. As Table A.6 shows, higher value

of employment implies higher level of physical activity. In fact, the average Physical Activity

Level is 1.64 for the employed and 1.52 for the unemployed.

8The implication of health issues and disability are straightforward. As for retirement, it can be regarded
as an indicator of age. Our results in the next section on NHANES show that age is negatively correlated
with physical activity level (Table A.6).
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Despite these features of the employment status variable, the proxy itself is not completely

free of endogeneity concerns. Indeed, employment does not represent all types of physical

activities. Recreational activities, for instance, may not be fully explained by employment

status. To minimize the endogeneity issue of the proxy variable, we adopt an instrumental

variable approach and apply a version of the Limited Information Maximum Likelihood

(LIML) that is derived speci�cally for the stochastic frontier analysis.

Our choice of the instrument is the frequency of weekend shopping. It is measured as

the percentage of a household's shopping trips that occurred during weekends. On the one

hand, whether a household shops on weekends or weekdays is highly correlated with its

employment status. In FoodAPS data, households of the highest 25% employment status

spend 34% of their trips on weekends, while the percentage of weekend trips is 26% for those

of the lowest 25% employment status. On the other hand, the instrument is exogenous in

a sense that it merely represents a choice of shopping schedule, not purchase decisions. For

instance, it is unlikely to a�ect the total food purchases over a whole week. In addition, it

is reasonable to assume that such shopping schedule is uncorrelated with physical activities

not represented by employment status such as recreational activities. Hence the instrument

is connected with the output only through the proxy variable.

There are several recent papers that tackle the issue of endogeneity in stochastic frontier

models. Maximum likelihood methods are studied in Kutlu (2010) and Amsler et al. (2016),

while Tran and Tsionas (2015) develop a copula approach without requiring external instru-

ments. Our notation for the LIML estimation is adopted from Amsler et al. (2016). In the

context of our framework, let us specify Model 2 by �rst adding a proxy variable for physical

activities, P̃Ah, which is the household employment status:

log yh = α0 + αPA log P̃Ah +
I∑
i=1

αi log xi,h +
I∑
i=1

∑
j≤i

βi,j log xi,h log xj,h + vh − uh (7)
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We assume that after adding the proxy, the potential endogeneity resides in P̃Ah whereas

the food purchases xi,h 's are exogenous. In addition, we do not include the interactions of

the proxy variable and food purchases as it leads to signi�cant di�culty in �nding enough

instruments to compensate. Similar to linear regressions, the idea of LIML in stochastic

frontier models is to add a set of reduced-form equations for the endogenous variables,

and to estimate them jointly with the original equation. Speci�cally, we add the following

reduced-form equation:

log P̃Ah = π0 + πIV log zh +
I∑
i=1

πi log xi,h +
I∑
i=1

∑
j≤i

πi,j log xi,h log xj,h + ηh (8)

where the instrument zh is the percent of household weekend shopping trips. Since we

have one endogenous variable and one instrument, the identi�cation is exact here. For cases

of multiple endogenous variables, the formulation and derivation of likelihood can be found

in Amsler et al. (2016).

As in Kutlu (2010) and the LIML case in Amsler et al. (2016), we assume that ηh is

correlated with vh, but not with uh. Let us denote ψh = (vh, ηh) and assume its distribution

as following:

ψh ∼ N(0,Ω), Ω =

 σ2
v σvη

σηv σ2
η


Then the presence of endogeneity corresponds to the case when σηv = σvη 6= 0. The

likelihood function is the joint density of εh and ηh, which can be derived analytically by

change of variables integration. The key assumptions needed to derive this density is the in-

dependence between ηh and uh, the normal distribution, as well as the independence between

vh and uh:

13



DRAFT: Do not cite or quote without the authors' permission.

fεh,ηh(εh, ηh) = constant · ση · exp

(
− η2h

2σ2
η

)
· σ−1h

·φ
(
εh − µch
σh

)
· Φ
(
−λh(εh − µch)

σh

)
where µc,h = (σvη/σ

2
η)ηh, σ

2
h = σ2

uh
+ σ2

c,h, σ
2
c,h = σ2

v − σ2
vη/σ

2
η, and λh = σuh/σc,h. Finally,

we can predict the ine�ciency term uh by its mean conditional on εh and ηh.

ûh
LIML = E(uh|ε̂h, η̂h)

= σ̂∗h[Λ(ĥh)− ĥh]

where ε̂h and η̂h are residuals from the LIML estimation, σ̂∗h =
σ̂uh σ̂c,h
σ̂h

, ĥh = λ̂h
σ̂h

(ε̂h− µ̂c,h),

and Λ(ĥh) = φ(ĥh)/[1 − Φ(ĥh)]. The percentage food waste is carried out the same way as

the baseline model (equation (6)).

2.4 Physical Activities�Data Imputation (Model 3)

In this section, we present an alternative approach to cope with the missing physical activi-

ties in FoodAPS data. The National Health and Nutrition Examination Survey (NHANES)

2011-2012 provides valuable records of di�erent types of physical activities of each survey

participant that can be transformed to the standard Physical Activity Levels that range from

1 to 2.5. Though di�erent datasets, FoodAPS and NHANES are both nationally represen-

tative. Additionally, they follow the same coding rules for many demographic variables, for

instance, employment status. This enables us to obtain estimates of correlations between

physical activities and various individual-speci�c characteristics, and apply these estimates

to impute the missing values in FoodAPS for each household member. The output in equa-

tion (2), Y (bh, PAh), now takes the form of the sum of individual member's total energy

expenditures, where m is the index for household members and Sizeh is household size:

Yh =

Sizeh∑
m=1

BMRm,h · P̂Am,h (9)
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Here, P̂Am,h is the second-stage imputed physical activity level for member m in house-

hold h, and BMRm,h is this member's basal metabolic rate. Note that the dependent variable

in the stochastic frontier estimation (equation 3) is now log Yh.

In the �rst stage, we run the regression of physical activity level PANHANESt on a set

of individual characteristics gNHANESt . There are two age groups: For ages of 12 to 19,

gNHANESt contains weight, height, age, and gender; and for ages 20 and above, employment

status and education level are added9. Employment status has the same four values and in

FoodAPS. And education represents the highest degree received by the survey participant

with 1 corresponds to 9th grade and 5 for college degree or higher.

PANHANESt = θ0 + θ′gNHANESt (First Stage) (10)

P̂Am,h = θ̂0 + θ̂′gFoodAPSm,h (Second Stage) (11)

The physical activity levels in NHANES PANHANESt are calculated using the Metabolic

Equivalents (METs) and its implied increase in physical activity levels. The METs represents

the multiples of an individual's resting oxygen uptake. Each value of METs corresponds to

a certain amount of increase in physical activity level, depending on how much time spent

daily on such activities, as shown in Table 1.

Physical activities are categorized into three types in NHANES: sedentary, moderate,

and vigorous. Each survey participant reports how much time he or she spends on each

type of activities on a typical day. Moreover, NHANES contains suggested METs values of

moderate and vigorous activities, whereas the METs of sedentary activities is taken from

Table 12-3 of Institute of Medicine (2005). Then PANHANES is calculated by equation (12)

for each individual. The number 1.1 re�ects the base energy requirement plus 10% thermal

e�ect of food. As the readers may notice, the per 1-hour values in the last column of Table

9NHANES does not report physical activities for ages under 12.
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Table 1: METs and Increase in Physical Activity Level

Activity Type METs ∆PAL/10min ∆PAL/1h

Sedentary Activities
(Type = 1)

1.5 0.005 0.03

Moderate Activities
(Type = 2)

4.0 0.029 0.17

Vigorous Activities
(Type = 3)

8.0 0.067 0.4

Source: Table 12-1, Table 12-2 and Table 12-3 in citation Institute of Medicine (2005), and

Appendix 1 in NHANES 2011-2012 Codebook of Physical Activity (PAQ_G). Note: time spent on

activities is calculated based on a typical day.

1 are not exactly six times the the per 10-min values due to the nonlinear relationship. For

the TimeType variable, our paper uses the per 10-min values in the calculation, while the

results change little if using the other.

PANHANES = 1.1 +
3∑

Type=1

∆PALType · TimeType (12)

The estimation results of �rst-stage regression are contained in Table A.6 in the appendix.

Male consistently have higher physical activity levels than female, in both age groups. Weight

is negatively correlated with physical activities while height has a positive correlation. For

persons of age 20 and above, employment status and higher education are associated with

higher activity levels, while age has a negatively impact.

Once we obtained estimates of coe�cients, θ̂0 and θ̂′, we substitute them into second-

stage imputation. A summary of the imputed physical activity levels is contained in the

appendix. As Figure 1 shows, the distribution of imputed values log P̂Am,h has a negative

skewness. If, for each household, we take the average value of log P̂Am,h across all members,

then this average has a similar skewed shape. Roughly speaking, the negative skewness would

probably generate overestimated food waste in Model 1. This is because the ine�ciency uh

has a half-normal distribution and the missing term − logPAh would increase the estimated
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Figure 1: Distribution of log P̂Am,h

σ2
uh
. It is, however, noteworthy that this reasoning may not strictly hold for every case of

negatively skewed log P̂Am,h. As we discussed in Section 2.1, the exact bias of food waste

depends on many other factors.

3 Data and Results

3.1 Variables

The dependent variable, log yh, is the logarithm of the sum of household members' BMR.

FoodAPS reports most individuals' body measures, age, and gender. Households with miss-

ing member BMR are dropped. In Model 3, we obtain the imputed physical activities and

use they to calculate the household total energy expenditure Yh =
∑Sizeh

m=1 BMRm,h ·P̂Am,h as

a re�ned output measure. A summary of yh and Yh is provided in Table 2. The independent

variables, log x1,h, log x2,h, ... log xI,h, are logarithms of total amount of food acquisition, for
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nine groups of food10. The food groups are categorized based on the USDA's What We Eat

in America (WWEIA) 9-group code. Note that FoodAPS has a tenth group that represents

food not coded by the preceding criteria. We combine this last group with the ninth group

in USDA code�the later being �infant formula and all other food without a category code�.

The summary statistics of the total amounts x1,h, x2,h, ...xI,h are presented in Table 3.

There are three demographic variables used to determine the ine�ciency term's distribu-

tion: household monthly income per adult equivalent , overall self-evaluated diet healthiness,

and household food security measure. The income variable is continuous. We use total family

income in thousand dollars divided by adult equivalent household size. In calculating adult

equivalence, we assign children under age of 6 years a weight of 0.2, between 7 to 12 years a

weight of 0.3, and 13 to 17 years a weight of 0.5 (World Bank, 2005). The other two variables

take discrete values and are normalized between 0 and 1. Diet healthiness has values 1 to

4, with 1 representing least healthy diet and 4 as the healthiest. Food security measure has

three levels with highest value as the most secure11. These demographic variables enter the

model as explanatory variables for σ2
uh
.

Table 2: Summary Statistics-Dependent Variable

Mean Standard

Deviation

5% percentile 95% percentile

yh, Total Household BMR 4293.2 2401.8 1312.9 8699.6

Yh, Total Household Energy

Expenditure

6974.1 4019.82 1933.1 14300.0

10Since for some households, there are food groups with zero values, we used log(xi,h + 1) in estimation.
The mean amounts of food in the data are typically in thousands. Hence we believe the bias, if any, is
negligible. In fact, using log(xi,h + 0.001) would produce the same amount of food waste.

11The orders of number values in diet healthiness, food security and employment status are reversed in
the original FoodAPS data. For instance, 1 represents the healthiest or most secure in FoodAPS. We reverse
the orders to avoid confusion in relating the values and their meanings. Moreover, we reduced the number
of levels of diet healthiness and food security to combine marginal small groups.
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Table 3: Summary Statistics�Food Acquisition

Mean Standard

Deviation

5% percentile 95% percentile

x1,h, Milk and Dairy 3388.0 4276.6 0.0 11712.0

x2,h, Protein Foods 1746.4 2264.6 0.0 5692.6

x3,h, Mixed Dishes 2661.4 2629.0 0.0 7777.6

x4,h, Grains 1548.0 2136.8 0.0 5264.3

x5,h, Snacks 1428.4 1861.7 0.0 4951.2

x6,h, Fruit and Vegetables 2594.7 2950.9 0.0 8361.0

x7,h, Beverages 11099.4 11602.0 0.0 34852.2

x8,h, Condiments 1509.3 2286.6 0.0 5972.0

x9,h, Infant formula & Uncoded 90.1 610.7 0.0 340.2

Note: The amounts of food acquisition are in total grams.

Our second model contains an additional independent variable, household employment

status, which serves as a proxy for physical activities. It has four values, with 1 meaning

unemployed and not searching for a job and 4 representing employed. For each household,

we take the average value of all working-age members and normalize it to a range of 0 to 1.

In addition, the instrumental variable for the proxy is the frequency of household weekend

shopping trips, as a percentage share of all shopping trips during the week. In Model 3,

an additional demographic variable, education level, is used, which has �ve levels�from 9th

grade graduate to college graduate. The original education variable in FoodAPS has more

levels and was re-categorized to �ve-level as in NHANES. The detailed summary statistics

for all demographic variables are contained in the appendix.

3.2 Main Results

Elasticities on Food Groups

Because the number of parameters in our model is more than 60 and the estimated coe�cients

do not have direct interpretations, we show the elasticities of each food group on the output,
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as a means to display the direction and magnitude of the marginal e�ects12. For each

household, we calculate the elasticity of group k food as follows:

ek,h =
∂ log yh
∂ log xk,h

= αk +
∑
j<k

βk,j log xj,h + 2βk,k log xk,h +
∑
i>k

βi,k log xi,h (13)

Note that this elasticity is observation dependent. Hence we take the sample average

elasticity for each food group. The results are shown in Table 4. The �rst model considers the

baseline heteroskedastic stochastic frontier speci�cation. The second model adds household

employment status as a proxy variable for physical activities and frequency of weekend

shopping as an instrument. Model 2 has more observations than the other two because it

yields more households that have solutions for δ̂h (equation 6).

Most of the elasticities in these models are positive while the group 8 (Condiments) has

negative values in all three models. The negativity on condiments does not undermine our

results' validity. First, condiments are not signi�cant in producing output in the sense that

its �rst-order and second-order coe�cients, α8 and β8,8 are not statistically signi�cant (see

Appendix). Moreover, condiments, by their nature, do not contribute to energy intake at a

degree comparable to other groups, due to their relatively small share in food composition.

Among the groups with positive elasticities, group 3 (Mixed Dishes) persistently has the

highest values, followed by group 7 (Beverages). This result is consistent with our common

sense as they are major sources of gaining energy: mixed dishes are typical meals such as

pizza and sandwiches, and the majority of beverage items consist of sweetened products such

as soda and tea.

Percentage Food Waste

The estimates of average food waste across our sample and their sample standard deviations

are presented in Table 5. The percentage food waste estimates in three models are 31.9%,

30.4%, and 30.1%, respectively.

12The full estimation results of three models are left in the Appendix.
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Table 4: Mean Elasticities

Food Groups Model 1 Model 2 Model 3

1. Milk and Dairy 0.0634 0.0491 0.0637

2. Protein Foods 0.0243 0.0096 0.0237

3. Mixed Dishes 0.1434 0.1957 0.1574

4. Grains 0.0395 0.0282 0.0408

5. Snacks 0.0045 0.0240 0.0026

6. Fruit and Vegetables 0.0341 0.0511 0.0306

7. Beverages 0.0818 0.1352 0.0881

8. Condiments -0.0109 -0.0026 -0.0122

9. Infant formula & Uncoded 0.0103 -0.0046 0.0108

Number of Observations 3304 3579 3323

Note: Model 1: Baseline model. Model 2: Proxy-instrumental variable LIML estimation. Model 3:

Imputed physical activity levels.
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Table 5: Percentage Food Waste

Model 1 Model 2 Model 3

Average Waste 31.9% 30.4% 30.1%

Standard Deviation 15.8% 16.6% 15.4%

Note: Model 1: Baseline model. Model 2: Proxy-instrumental variable LIML estimation. Model 3:

Imputed physical activity levels.

By taking physical activities into consideration, the average food waste decreases by

about 2 percent in Model 2 and Model 3. This suggests that Model 1 overestimates food

waste with a small bias. As we discussed in Section 2.4, one of the potential reasons is

the negative skewness of the missing physical activity levels. Moreover, the coe�cient on

employment status, αPA in Model 2, is negative, which is consistent with our speci�cation.

Histograms of the waste in terms of ine�ciency ûh and percentage food δ̂h from Model 1

are depicted in Figure 2. As the graphs suggest, the ine�ciency ûh approximates the half-

normal distribution as we assumed, and the percentage food waste assembles a truncated

normal or a beta distribution.

Figure 2: Distribution of ûh and δ̂h

Note: ûh is the ine�ciency in terms of output, δ̂h is the food waste.
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Food Waste Determinants

We have included three demographic variables as determinants of food waste. Speci�cally,

the variance of the ine�ciency term, σ2
u , is conditioned on household monthly income per

adult equivalent, overall self-evaluated diet healthiness, and household food security measure:

σ2
uh

= exp(γ0 + γ′dh). The estimated γ̂'s are presented in Table 6. In all three models, they

are all statistically signi�cant except food security in Model 3. In fact, food security has

a p-value of 0.137 in Model 3, marginally close to signi�cance. Since higher ine�ciency ûh

yields higher food waste δ̂h, the parameters also indirectly indicate the e�ects of demographic

variables on percentage food waste.

The signs of these demographic variables make good economic sense. Income has a

positive impact on food waste (Figure 3). Households facing less constrained budgets are

more likely to spend less time managing food purchases and allocations among members. It

is also reasonable to believe that they appreciate their food less because they can �a�ord�

wasting.

The diet healthiness measure is positively correlated with food waste. Since a higher

diet score represents a healthier diet, this means consuming healthier food leads to more

waste (Figure 4). It seems to be inconsistent with common sense that people's awareness

of nutritional facts may also suggest they take better care of food. However, one important

component of healthy eating is perishable produce such as fruit and vegetables (group 6),

which is a major source of food waste. Our data show a persistent relationship between

diet healthiness and amount of group 6 food�the households with the highest self-stated diet

quality consume 50% more fruit and vegetables than those with the lowest diet quality.

The last determinant, the food security measure, is also positively correlated with food

waste in all three models, and signi�cant in Models 1 and 2. We leave the discussion on food

security to the next section as it pertains to policy issues.
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Table 6: Food Waste Determinants

Description Model 1 Model 2 Model 3

log σ2
uh

= γ0 + γ′dh

Income 0.3458*** 0.4089*** 0.3010***
(0.0601) (0.0657) (0.0635)

Healthy Diet 1.5147*** 0.9888* 1.7914**
(0.5871) (0.5411) (0.7222)

Food Security 1.9550* 2.3139** 2.1217
(1.1395) (1.0984) (1.4286)

Figure 3: Higher Income Leads to More Waste
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Figure 4: Healthy Diet Leads to More Waste

Note: higher values mean healthier diet.

3.3 Food Waste and Household Groups

In this section, we conduct several post-estimation analyses on food waste among various

household groups. The discussion focuses on issues that may be of interest to policy makers.

Our results for the food security in the previous section have a sound and intuitive

interpretation. Table 7 shows the average percentage waste along four levels of food security

and Figure 5 displays a typical box plot of food waste at each level. In all three models,

the less secure households waste signi�cantly less than the more secure ones. In fact, the

least secure households waste only about half the amount of the most secure, e.g. 20.5% vs.

39.9%, 18.0% vs. 38.9% and 18.6% vs. 38.1%. This persistent pattern is a robust evidence

supporting the fact that food insecure households save and appreciate their food more.

Next we turn to two national food assistance programs and their relationship with food

waste: the Supplemental Nutrition Assistance Program (SNAP) and the Women, Infants,
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Table 7: Food Waste and Food Security

Food Security Model 1 Model 2 Model 3

Low 20.5% 18.0% 18.6%

Medium 26.9% 25.3% 25.4%

High 39.9% 38.9% 38.1%

Note: These �gures represent the average of the estimated percentage of food wasted for the three

levels of stated household food security.

and Children Program (WIC). As Table 8 shows, in all three models, households receiving

SNAP bene�ts waste signi�cantly less (up to 30% less) than non-SNAP households. In

the lower part of Table 8, only WIC categorically eligible households are considered. The

average food waste for households receiving WIC is persistently less than those not receiving

the bene�t. However, careful interpretation is needed as to whether the SNAP and WIC

households waste less because their income is low or because they take good management

of the subsidized food. For instance, for those non-SNAP households, we do not distinguish

if they are eligible for SNAP. As for WIC, FoodAPS only reports the categorical eligibility

(i.e., female aged 14-49 years old and pregnant or children up to 5 years old) but not the

income requirement. Therefore it is not clear how much of the di�erence can be attributed

to each reason, i.e., income or management.

Finally, it is also interesting to observe that the average percentage food waste tends to

decrease as the size of households gets larger. In Table 9, the single-member households are

associated with the highest rate of food waste�more than 40%, and the rate is reduced to

20% for six-member households13. It suggests that larger households may spend more time

managing food purchases and more e�ciently allocate among the members. A single-member

household, on the other hand, is less �exible to remedy over-purchased or near-expiring food.

13We only show households up to 6 members, as they account for 99% of the sample.
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Figure 5: Food Insecurity Leads to Less Waste

Note: higher values mean higher security

Table 8: Food Waste, SNAP and WIC

Model 1 Model 2 Model 3

SNAP

Non-SNAP 35.2% 33.6% 33.2%

SNAP 24.7% 23.5% 23.6%

WIC

Eligible, Not
Receiving

28.0% 24.2% 26.2%

Eligible, Receiving 23.5% 20.7% 22.4%

Note: These �gures represent the average of the estimated food waste for di�erent SNAP and WIC

categories.
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Table 9: Food Waste and Household Size

Household Size Model 1 Model 2 Model 3

1 44.7% 45.5% 41.8%

2 36.3% 34.8% 34.4%

3 29.7% 26.7% 27.9%

4 25.2% 22.2% 23.9%

5 23.0% 19.8% 21.6%

6 20.3% 18.1% 19.3%

Note: First column refers to the number of household members. These �gures represent the average

of the estimated food waste for various household sizes.

4 Robustness to Speci�cation

In general, a translog model is a �exible form that provides the possibility for a good �t

in most cases. In this study, we have obtained reasonable estimates for food waste and

impacts of household-speci�c variables. However, besides the functional form, there are

other perspectives of the model that deserve careful examination within this new approach

to estimating food waste. In this section, we provide discussions on the robustness of two

important speci�cations of our model�the choice of input units, and choice of demographic

variables that determine productivity ine�ciency.

4.1 Choice of Input Units

In our speci�cation, the food inputs xh = (x1,h, x2,h, ...xI,h)
′ are measured by their weights

in grams. Here we present results that are based on their calorie contents. Testing our

method on a di�erent input measure provides valuable insights on the robustness of the

model speci�cation.
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Table 10 and Table 11 contain the new estimates of the percentage waste and the demo-

graphic determinants. The food waste estimates in all three models are very close to previous

estimates. Moreover, the food waste determinants are also in line with our previous numbers,

only except that the signi�cance of food security measure are weakened. Finally, applying

LIML estimation and imputation on physical activities produce lower food waste estimates

than Model 1 as before. Overall, a di�erent choice of input units does not produce a sensitive

change in major estimates, which supports the robustness of our model speci�cation.

Table 10: Percentage Food Waste�Calorie Contents

Model 1 Model 2 Model 3

Average Waste 34.4% 30.7% 33.3%

Standard Deviation 15.8% 17.0% 15.5%

Number of Observations 3681 3678 3695

Table 11: Food Waste Determinants�Calorie Contents

Description Model 1 Model 2 Model 3

log σ2
uh

= γ0 + γ′dh

Income 0.3534*** 0.4084*** 0.3101***
(0.0682) (0.0692) (0.0766)

Healthy Diet 1.0068* 0.8690* 1.1849*
(0.5507) (0.5233) (0.6824)

Food Security 1.4681 1.8546* 1.4883
(0.9540) (0.9533) (1.1676)
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4.2 Choice of Demographic Variables

We included three demographic variables that determine the variance of the half-normal

distributed ine�ciency uh: household monthly income per adult equivalent, overall self-

evaluated diet healthiness, and household food security measure. We chose them as they

directly in�uence food purchase and management. In addition, they have high impact on

people's attitude towards wasting food.

As discussed in the preceding section, there are other demographics that are potentially

correlated with food waste, such as SNAP bene�ts. We did not use them as variables in

estimating σ2
uh

mainly because their e�ects on food waste are considered indirect. On the

other hand, changing the demographic variables may shift our estimates on food waste while

patterns across di�erent household groups maintain. For instance, when adding SNAP into

the model, the average food waste estimates are around 27% in the three models while other

waste determinants' coe�cients remain similar. Another interesting observation is that, for

many combinations of demographic variables, when income is dropped from the model, the

waste estimates will often decrease.

These modest robustness checks lead to two main conclusions: (i) Average food loss

estimates may vary by several percentage points when using di�erent combinations of demo-

graphics, and ii) Nonetheless, the post-estimation analysis shows the patterns across house-

hold groups persist, e.g., less food secure households waste less. As there lack theoretical

restrictions of choosing demographics, systematic bias may not be completely avoided. How-

ever, as most heteroskedastic stochastic frontier studies show, what is of more importance is

the relative di�erence among observations or groups.

5 Conclusion

Our estimates on average consumer-level food waste are in line with existing estimates on

average food waste. Moreover, we are able to assign each individual household a waste
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estimate. Model 2 and Model 3 also point out the importance of taking physical activities

into consideration whenever feasible. Household-level estimates enable us to conduct a series

of interesting analyses on the relationship between food waste and household characteristics.

For example, we see a clear link between food waste and levels of dietary healthiness.

The model presented in this paper can serve as a foundation for further extensions and

for conducting speci�c hypothesis testing. For example, it would be of considerable value

if one can formulate and test di�erent waste rates for each food group, possibly through a

latent class Bayesian estimation.

Results discussed in the previous sections, taken together, help illustrate our contribution

in the context of previous research on food waste. While the precise measurement of food

waste is important, it may be equally important to investigate how household factors in�u-

ence food waste. Our indirect method allows us to accomplish this section task. Thus, we

hope that our approach provides other researchers working on the topic a new lens through

which estimation on individual household level food waste is feasible; and that it encour-

ages them to extend the idea of indirect measurement to applications on other datasets and

interesting cases.
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Appendix.

The Revised Harris-Benedict Equation (Roza and Shizgal, 1984):

For Male: BMR=88.362 + 13.397*weight(kg) + 4.799*height(cm) - 5.677*age(year)

For Female: BMR = 447.593 + 9.247*weight(kg) + 3.098*height(cm) - 4.33*age(year)

Table A.1: Summary Statistics�Continuous Variables

Mean Standard

Deviation

5%

percentile

95%

percentile

d1, Income 1.716 1.393 0.345 4.611

P̃Ah, Employment Status 0.649 0.291 0.250 1.000

zh, Weekend Shopping

Frequency

0.294 0.343 0.000 1.000

P̂Am,h, Imputed Physical

Activity

1.614 0.1134 1.412 1.792

• Income is household monthly total income divided by adult equivalent household size, in

thousand dollars.

• Employment Status: for each working-age household member, 1= not working; 2= looking

for work; 3= with a job but not at work; 4= working. PAh is calculated by taking the average

value of working-age household members and normalized to 0-1.

• Weekend Shopping Frequency is the percentage share of household shopping trips that occur

during the weekends.
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Table A.2: Summary Statistics�Diet Healthiness

Values 1 2 3 4 Total

Frequency 1093 1730 986 263 4072

Percentage 26.84% 42.49% 24.21% 6.46% 100%

Note: First row: higher values represent healthier diet.

Table A.3: Summary Statistics�Food Security

Values Low Medium High Total

Frequency 1105 798 2171 4074

Percentage 27.12% 19.59% 53.29% 100%

Note: First row: higher values represent higher food security.

Table A.4: Summary Statistics�Household Size

Size 1 2 3 4 5 6 7 Total

Frequency 904 1199 726 629 347 151 69 4074

Percentage 22.19% 29.43% 17.82% 15.44% 8.52% 3.71% 1.69% 98.38%

Note: First row: number of household members.
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Table A.5: Summary Statistics�Education

Values 1 2 3 4 5 Total

Frequency 361 1243 2707 2513 1671 8495

Percentage 4.25% 14.63% 31.87% 29.58% 19.67% 100%

Note: for each individual of age 20 and above, value ranges from 1 to 5, representing di�erent

levels of highest degrees, with 1= up to 9th degree, 2= 9-11th grade, 3=high school, 4=associate

degree, 5=college graduate or above. It is normalized to 0-1.

Table A.6: First-Stage Regression on NHANES

Age 12-19 Age>=20

Weight -0.0010 -0.0007***
(0.0006) (0.0002)

Height 0.0043*** 0.0037***
(0.0016) (0.0007)

Age -0.0058 -0.0033***
(0.0052) (0.0003)

Male 0.0813*** 0.0596***
(0.0254) (0.0125)

Employment Status 0.0731***
(0.0136)

Education 0.1837***
(0.0187)

Constant 1.1369*** 0.9706***
(0.2223) (0.1057)

Number of Observations 1028 4475
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Table A.7: Full Estimation Results

Description Model 1 Model 2 Model 3

Production Equation

αPA, (Employment Status) -0.7138
(0.4884)

α1, (Milk and Dairy) -0.0719*** -0.021*** -0.0738***
(0.0136) (0.0289) (0.0143)

α2, (Protein Foods) -0.0250* 0.0151 -0.0235
(0.0144) (0.0344) (0.0152)

α3, (Mixed Dishes) -0.0937*** -0.1339*** -0.1025***
(0.0142) (0.0419) (0.0149)

α4, (Grains) -0.0706*** -0.0185 -0.0762***
(0.0147) (0.0333) (0.0154)

α5, (Snacks) -0.0228 0.0137 -0.0225
(0.0145) (0.0401) (0.0153)

α6, (Fruit and Vegetables) -0.0276** -0.0957*** -0.0262*
(0.0141) (0.0349) (0.0148)

α7, (Beverages) -0.0671*** -0.1535*** -0.0694***
(0.0128) (0.0401) (0.0135)

α8, (Condiments) 0.0114 0.0685* 0.0141
(0.0138) (0.0374) (0.0145)

α9, (Infant formula & Uncoded) -0.0021 0.0215 -0.0062
(0.0388) (0.0768) (0.0407)

α0, (Constant) 8.1370*** 7.4556*** 8.5869***
(0.0826) (0.4495) (0.0890)

β1,1 0.0100*** 0.0104*** 0.0103***
(0.0012) (0.0023) (0.0013)

β2,1 -0.0015 -0.0017 -0.0016
(0.0011) (0.0024) (0.0012)

β2,2 0.0030* -0.0045 0.0029*
(0.0016) (0.0040) (0.0016)

β3,1 -0.0006 -0.0023 -0.0009
(0.0011) (0.0026) (0.0012)

β3,2 0.0015 -0.0013 0.0017
(0.0014) (0.0034) (0.0015)

β3,3 0.0153*** 0.0199*** 0.0167***
(0.0015) (0.0040) (0.0016)

β4,1 0.0006 0.0006 0.0006
(0.0010) (0.0020) (0.0010)

β4,2 0.0012 0.0065 0.0012
(0.0013) (0.0031) (0.0014)
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β4,3 0.0018 0.0017 0.0017
(0.0014) (0.0035) (0.0014)

β4,4 0.0065*** 0.0049 0.0069***
(0.0016) (0.0031) (0.0016)

β5,1 0.0017* 0.0100** 0.0019*
(0.0010) (0.0040) (0.0011)

β5,2 -0.0016 -0.0017 -0.0018
(0.0014) (0.0033) (0.0015)

β5,3 0.0002 0.0030 0.0002
(0.0014) (0.0027) (0.0014)

β5,4 0.0004 -0.0023 0.0005
(0.0016) (0.0028) (0.0013)

β5,5 0.0008 0.0042 0.0006
(0.0015) (0.0030) (0.0016)

β6,1 0.00004 -0.0005 0.0001
(0.0012) (0.0034) (0.0013)

β6,2 0.0019 0.0049 0.0020
(0.0014) (0.0036) (0.0015)

β6,3 0.0013 0.0056 0.0017
(0.0014) (0.0043) (0.0015)

β6,4 -0.0015 -0.0085* -0.0015
(0.0015) (0.0050) (0.0015)

β6,5 -0.0005 -0.0067 -0.0005
(0.0015) (0.0042) (0.0016)

β6,6 0.0031** 0.0084*** 0.00236*
(0.0015) (0.0030) (0.00185)

β7,1 0.0005 -0.0042 0.0006
(0.0011) (0.0030) (0.0012)

β7,2 0.0010 0.0043 0.0010
(0.0014) (0.0036) (0.0015)

β7,3 -0.0014 0.0010 -0.0012
(0.0013) (0.0031) (0.0014)

β7,4 0.0013 0.0002 0.0015
(0.0014) (0.0034) (0.0015)

β7,5 0.0013 -0.0062** 0.0014
(0.0014) (0.0032) (0.0014)

β7,6 0.0001 0.0079** -0.0001
(0.0015) (0.0037) (0.0015)

β7,7 0.0070*** 0.0145*** 0.0074***
(0.0012) (0.0042) (0.0013)

β8,1 -0.0008 -0.0009 0.0008
(0.0009) (0.0019) (0.0009)
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β8,2 -0.0017 -0.0051 -0.0020
(0.0013) (0.0032) (0.0013)

β8,3 -0.0015 -0.0031 -0.0015**
(0.0013) (0.0026) (0.0014)

β8,4 -0.0004 0.0009 -0.0003
(0.0011) (0.026) (0.0012)

β8,5 0.0009 0.0004 0.0009
(0.0011) (0.0024) (0.0012)

β8,6 0.0007 -0.0043 0.0006
(0.0013) (0.0030) (0.0014)

β8,7 0.0005 -0.0002 0.0006
(0.0014) (0.0030) (0.0014)

β8,8 -0.0007 0.0014 -0.0012
(0.0013) (0.0026) (0.0014)

β9,1 -0.0001 0.0008 -0.0001
(0.0016) (0.0026) (0.00187)

β9,2 -0.0047* -0.0040 -0.0048
(0.0029) (0.0054) (0.0031)

β9,3 -0.0038* -0.0085** -0.0039
(0.0023) (0.0041) (0.00274)

β9,4 -0.0017 -0.0056 -0.0021
(0.0023) (0.0040) (0.0024)

β9,5 -0.0021 0.0004 -0.0026
(0.0023) (0.0041) (0.0025)

β9,6 0.0019 0.0028 0.0027
(0.0029) (0.0060) (0.0030)

β9,7 0.0079*** 0.0068* 0.0081***
(0.0030) (0.0065) (0.0032)

β9,8 0.0028 0.0014 0.0033*
(0.0019) (0.0036) (0.0020)

β9,9 -0.0021 0.0013 -0.0023
(0.0039) (0.0069) (0.0041)

White Noise σ2
v 0.4845*** 0.3788*** 0.3262***

(0.0080) (0.2117) (0.0014)

Ine�ciency log σ2uh = γ0 + γ′dh

Income 0.3458*** 0.4089*** 0.3010***
(0.0601) (0.0657) (0.0635)

Healthy Diet 1.5147*** 0.9888* 1.7914**
(0.5871) (0.5411) (0.7222)

Food Security 1.9550* 2.3139** 2.1217
(1.1395) (1.0984) (1.4286)
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Constant -6.5729*** -8.1155*** -7.7571***
(1.7434) (1.8586) (2.0310)

Note: Model 1: Baseline model. Model 2: Proxy-instrumental variable LIML estimation. Model 3:

Imputed physical activity levels.
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