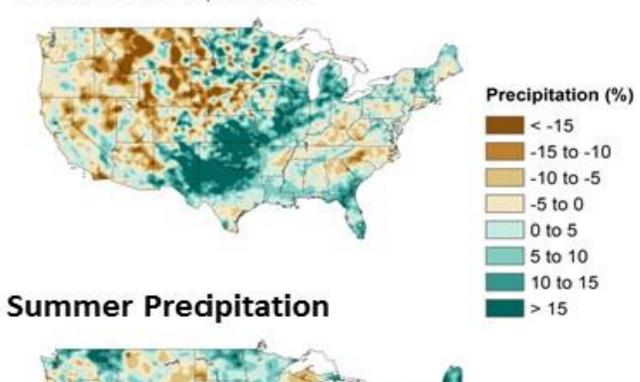

2018 Monthly Precipitation Across PA NEWA Stations

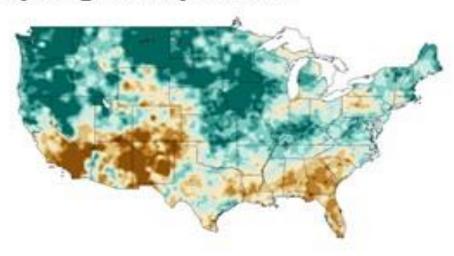
Month	Biglerville	Piney Mountain	York Springs	Rock Springs	Lewisburg	Middletow n	New Paris	Allentown	Reading	Erie	Scott Twnshp	Pittsburgh
	4.48		3.55	1.79	2.30	4.00	1.44	4.91	3.20	2.28	2.35	C
Jan	4.40	3.11	5.55	1.79	2.30	4.00	1.44	4.51	5.20	2.20	2.55	3.60
Feb	4.20	4.88	5.02	5.04	3.79	5.44	5.59	5.50	5.53	3.26	3.34	7.10
March	0.94	1.85	2.12	1.24	1.78	2.97	2.28	3.23	2.34	3.75	1.20	2.74
April	4.68	4.84	4.22	3.09	3.48	3.98	3.92	3.69	3.70	3.43	3.65	4.17
May	5.11	5.26	5.49	4.52	4.88	5.71	4.33	4.89	4.18	3.35	5.74	2.83
June	3.86	5.13	4.49	5.01	3.57	3.99	7.21	2.58	4.28	3.98	4.16	5.11
July	7.64	<mark>10.78</mark>	11.42	<mark>8.89</mark>	<mark>9.31</mark>	<mark>12.09</mark>	3.97	5.80	6.13	2.46	6.59	3.96
Aug.	5.86	5.03	6.35	7.17	6.32	5.28	3.44	<mark>12.21</mark>	<mark>14.81</mark>	4.87	<mark>9.03</mark>	4.53
Sept.	<mark>9.73</mark>	10.13	10.20	8.02	8.70	6.81	<mark>9.69</mark>	6.65	8.03	4.37	7.59	<mark>8.50</mark>
Oct.	4.06	2.69	2.80	2.79	3.30	2.39	4.71	3.25	2.01	<mark>6.48</mark>	4.36	3.59
Nov.	6.73	7.56	7.87	6.00	4.85	8.46	4.53	9.58	7.83	5.12	5.19	4.40
Dec	6.21	6.95	6.42	5.67	5.03	5.70	5.06	6.24	4.51	3.35	3.05	4.97

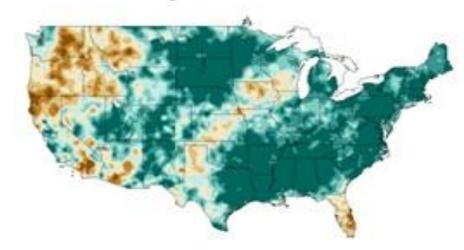
Total Precipitation in 2018 from PA NEWA Weather Stations

	Biglerville	Piney Mountain	York Springs	Rock Springs	Lewisburg	Middletwn	New Paris	Allentwn	Reading	Erie	Scott Twnshp	Pittsburgh
Total	63.50	68.21	<mark>69.95</mark>	59.23	57.31	66.82	56.17	68.53	66.55	46.70	56.25	55.50



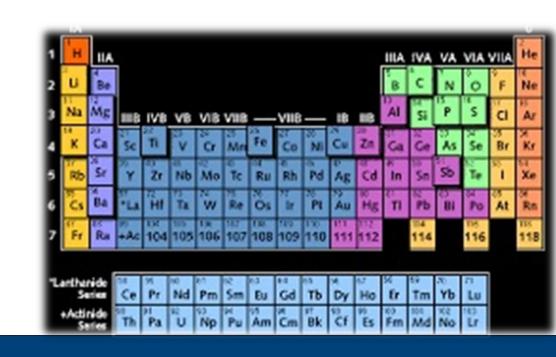
Wet Season Issues


- Leaching
 - Herbicides
 - Nutrients
- Fruit Growth & Quality
 - Carbohydrates and Thinning
 - Fruit sugar levels
- Future Plantings

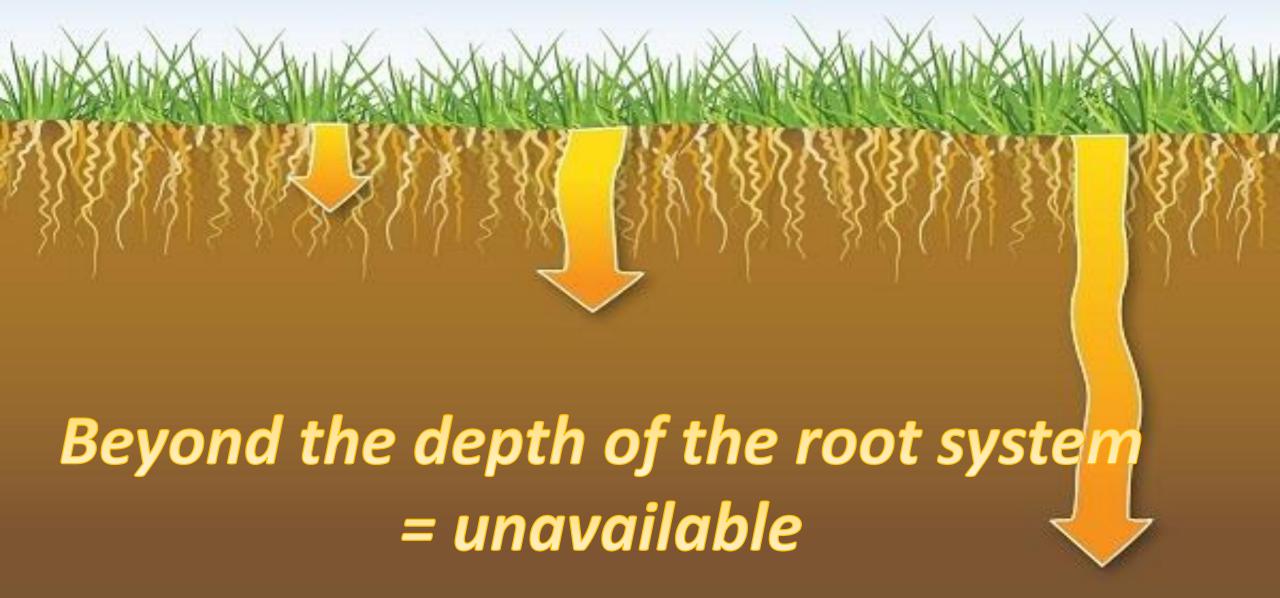

Winter Precipitation

Spring Precipitation

Fall Precipitation

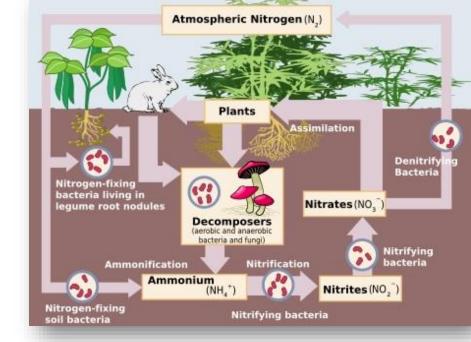

Leaching

 The downward movement of dissolved nutrients/herbicides in the soil profile with percolating water



Susceptibility of Nutrients to Leaching

- Anions
 - Nitrate (NO₃⁻)
 - Sulfur (SO_4^{-2})
- Cations in sandy or coarse soils
 - Calcium (Ca⁺²)
 - Magnesium (Mg⁺²)
- Micronutrients
 - Boron
 - Manganese



Leaching

Saturated Soils

- Reduction in nitrification in waterlogged soils
- Nitrogen losses from soil can occur when rainfall exceeds transpiration
 - Occurs more often under high intensity rains
- Nitrogen is more often lost due to subsurface leaching than to runoff
- Nitrogen leaching losses account for ~30% of mineral N fertilizer
- Mulching/Sod strips can reduce N loss through greater recycling

N Cycle

Considerations for Nutrient Leaching

- % Organic matter in soil (Orchards often <3%)
- Ground Management System (GMS)
 - Impact on soil microbiology
- Splitting fertilizer applications
 - One before flowering and one after fruit set (especially with stone fruits)
 - 1/3 before bloom, 1/3 after fruit set, 1/3 postharvest
- Micronutrient foliar sprays
 - Annual applications of B & Zn
 - Postharvest or early spring

Fate of Herbicides

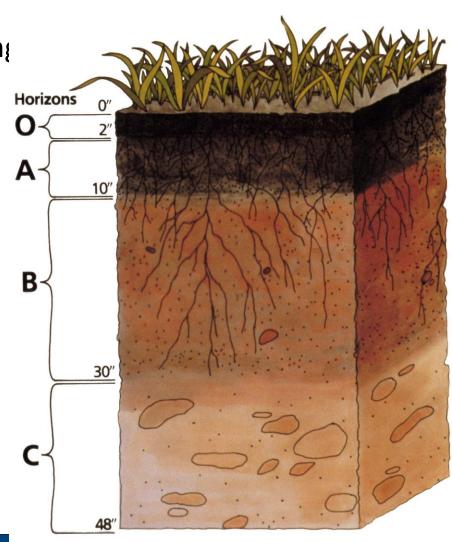
- Prift Volatilization
 Runoff Photodecomposition
 Adsorption
 Dilution
 Leaching
- Chemical degradation and photodecomposition
 - Hydrolysis, oxidation, reduction, photodecomposition
- Living rhizosphere microbial decomposition
 - Bacteria, fungi, algae, invertebrates other microorganisms
- Volatilization and evaporation
 - Increases with temperature, vapor pressure and wind movement
- Plant uptake and metabolism
 - By roots shoots or leaves
 - Majority of weed seedlings germinate in top 2-3 inches of soil

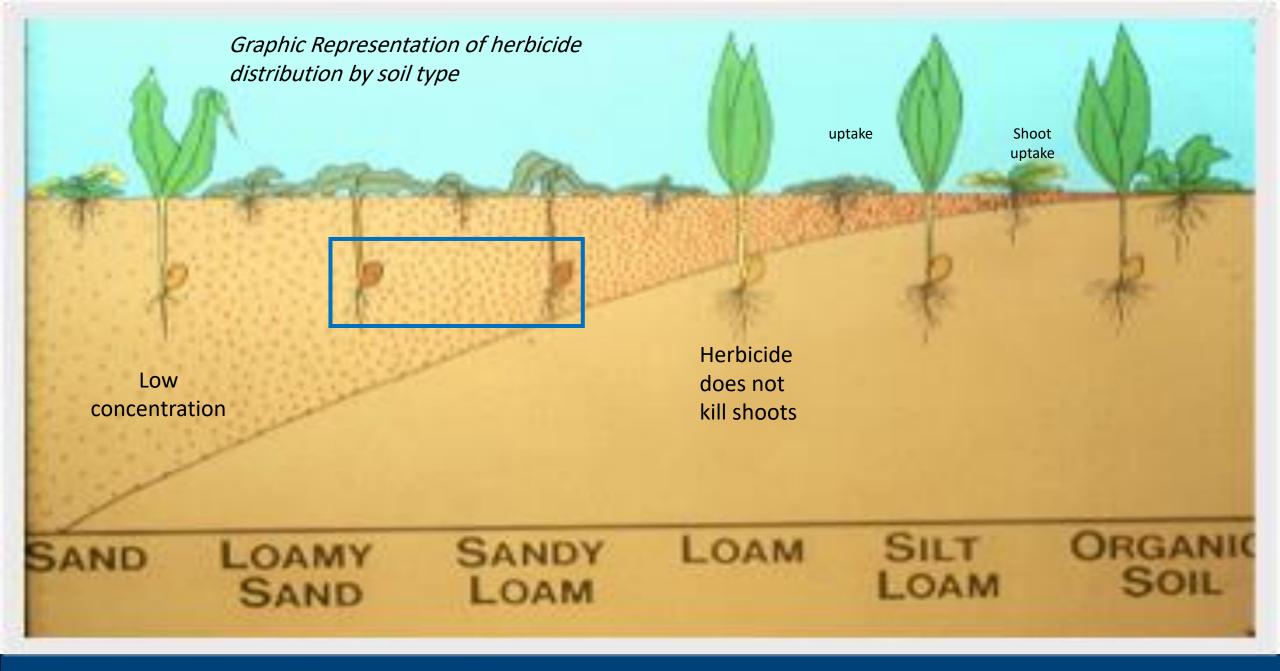
Characteristics of Herbicides Impacting leaching

- Solubility high solubility > more leaching
- Adsorbency stronger binding to soil > less leaching/loss
- Persistence quick degradation by sunlight or microbes
 - Moist soils favor high microbial populations > greater breakdown
- Formulation granular materials more susceptible
 - e. g. Casoron

Moisture Levels to Move Herbicide into Soil to Achieve Optimum Level of Control

Relative Moisture to Activate	Solubility of Herbicide (ppm)	Estimated Water to Activate (inches)
Low	> 500 ppm (very soluble)	0.33
Medium	250 – 500	0.33 - 0.5
High	100 – 250	0.5 – 0.75
Very High	< 100	> 0.75


Soil factors affecting herbicide persistence


- Soil Composition
 - High in clay, %OM or both favor retention and less leaching
 - May also be less effective
- Soil pH impact chemical & microbial breakdown;
 - rimsulfuron, halosulfuron-methyl
 - ≥ 7.0; may persist longer
 - ≤ 6.0; may degrade faster
- Soil microbial population
 - Warm, moist, well-aerated fertile soil favors soil microbes

Characteristics of soil that impact runoff

- Organic matter
 - High OM less runoff, more surface area for binding
- Slope
- Soil texture
 - Coarse texture -> more runoff
 - Clays less runoff
- Structure
 - Compacted soil -> more runoff
- Water content
 - Saturate soils -> more runoff

Chemical	Product	Solubility (ppm)	K _{oc} Sorption Index		Leaching Potential	Soil half life (days)
2,4-D	Formula 40, etc.	900	61.7	4	Some	10
carfentrazone-ethyl	Aim	12000	3.36	14	None	0
clopyralid	Stinger, Spur, etc	1000	6 to 60	4	Moderate	40
clethodim	Select, Arrow, etc.	NA		1	NA	3
diclobenil	Casaron	20.5	400		Low	60
diuron	Karmex, Diuron, etc.	42		7	Moderate except in low OM & clay soils	90
fluazifop-P	Fusilade	1.1		1	Low	15
flumioxazin	Chateau, Tuscany, etc.	2		14	Low	20
fluroxypyr	Starane Ultra	4000		4	Low	36
glufosinate	Rely, etc.	>10 6		10	High	7
glyphosate	RoundUp, etc	15000		9	V. Low	47
halosulfuron-methyl	Sandea	15		2	low to moderate	30
indaziflam	Alion	2040	>1000	29	NA	1500
isoxaben	Gallery, Trellis, etc	1.04	190-1270		High	60
mesotrione	Broadworks	2200	14-390	27	Low	21
norflurazon	Solicam	28	12	12	%OM & Clay, runoff	45
oryzalin	Surflan	3		3	Moderate	20
oxyflurofen	Goal, Goal Tender, etc.	0.1	100,000	14	Sands	35
paraquat	various	10 ⁶ est.	10 ⁶ est.		not	NA
pelargonic acid	Scythe	10		26	NA	NA
pendimethalin	Prowl H2O, Prowl, etc.	0.3	5000	3	not	44
penoxsulam	Pindar, etc.	410	104		High	5 to 16
pronamide	Kerb	15		3	low to moderate	60
pyraflufen-ethyl	Venue	<1		14	NA	60
rimsulfuron	Matrix, Pruvin, Solida, etc.	7300		2	Low	3
saflufenacil	Treeix	0.21	9 to 56	14	Very	17
sethoydim	Poast	4400	100	1	NA	7
simazine	Princep, Caliber 90	2	130	5	Moderate	60
sulfentrazone + carfentrazone	Zeus Prime XC	780 + 12,000	9.8 + 3.36	14	Moderate	120+0
terbacil	Sinbar	710	55	5	Moderate	120
trifluralin	Treflan	0.3	8765	3	Low	45

Solubility: Amount of herbicide that will dissolve in a specified amount of water. The higher the number the more herbicide in the soil solution and available to plant but can also be leached from effective zone of weed germination. The lower the number the more tightly the herbicide is bound to soil particles

Sorption Index (K_{oc}): Ratio of amount of herbicide adsorbed by soil to aamount in the soil solution. Low sorption index means greater amount of herbicide is in soil solution and less is held onto soil particles, i.e. greater likelihood of leaching

Half-life: Period of time it takes for 50% of a herbicide in soil to degrade by sunlight, microbial action or plant absorption

Go to: Handout on Herbicide Characteristics

Chemical	Product	Solubility (ppm)	K _{oc} Sorption Index	WSSA Group	Leaching Potential	Soil half life (days)
2,4-D	Formula 40, etc.	900	61.7	4	Some	10
carfentrazone-ethyl	Aim	12000	15-25	14	None	0
clopyralid	Stinger, Spur, etc	1000	6 to 60	4	Moderate	40
clethodim	Select, Arrow, etc.	NA	0.05 - 0.23	1	NA	3
diclobenil	Casaron	20.5	400		Low	60
diuron	Karmex, Diuron, etc.	42	259-2090	7	Moderate, except > in low OM, & < clay soils	90
fluazifop-P	Fusilade	1.1	5700	1	Low	15
flumioxazin	Chateau, Tuscany, etc.	2	NA	14	Low	20
fluroxypyr	Starane Ultra	4000	39 - 71	4	Low	36
glufosinate	Rely, etc.	>10 6	100	10	High	7
glyphosate	RoundUp, etc	15000	24000	9	V. Low	47
halosulfuron-methyl	Sandea	15	93 - 113	2	low to moderate	30
indaziflam	Alion	2040	>1000	29	NA	1500
isoxaben	Gallery, Trellis, etc	1.04	190-1270		High	60
mesotrione	Broadworks	2200	14-390	27	Low	21
norflurazon	Solicam	28	12	12	%OM & Clay, runoff	45
oryzalin	Surflan	3		3	Moderate	20
oxyflurofen	Goal, Goal Tender, etc.	0.1	100,000	14	Sands	35
		,				
simazine	Princep, Caliber 90	2	130	5	Moderate	60
A		700 40 000	0.0.000			400 0

780 + 12,000

710

0.3

9.8 + 3.36

55

8765

14

Moderate

Moderate

Low

120 + 0

120

45

Penn State Extension

Zeus Prime XC

Sinbar

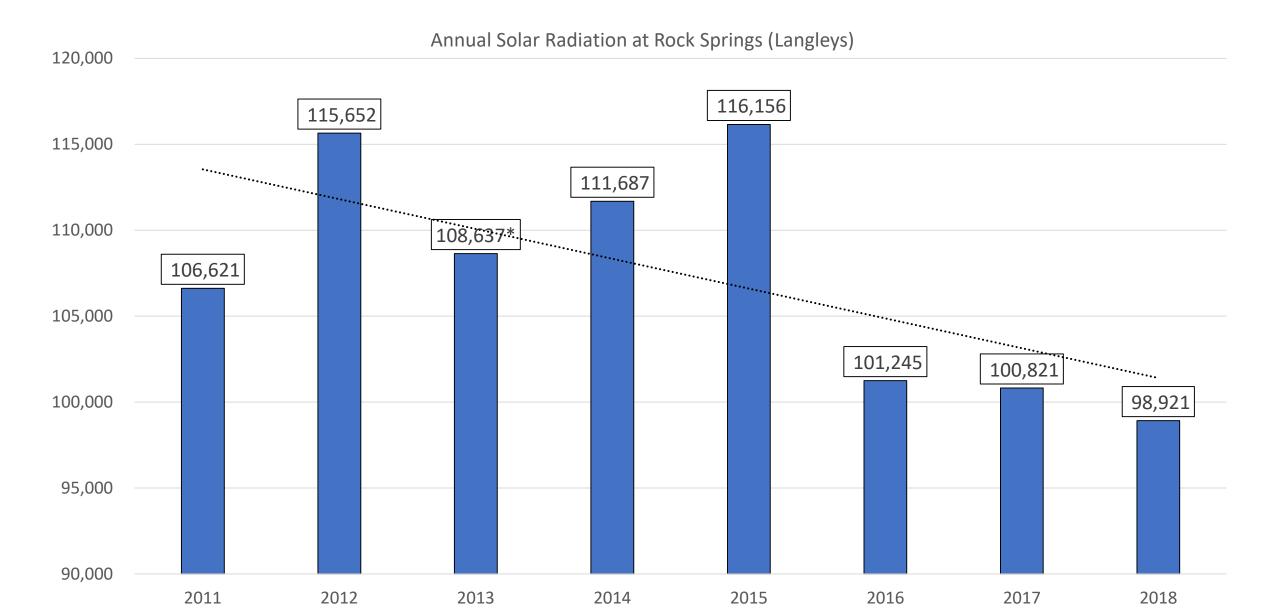
Treflan

sulfentrazone + carfentrazone

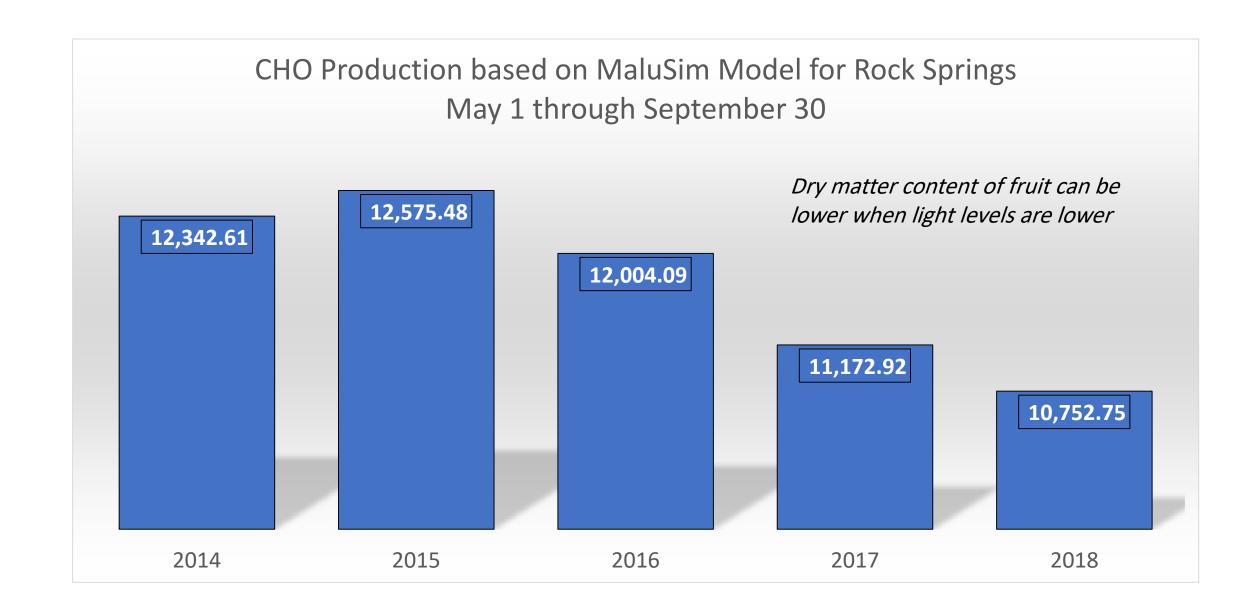
terbacil

trifluralin

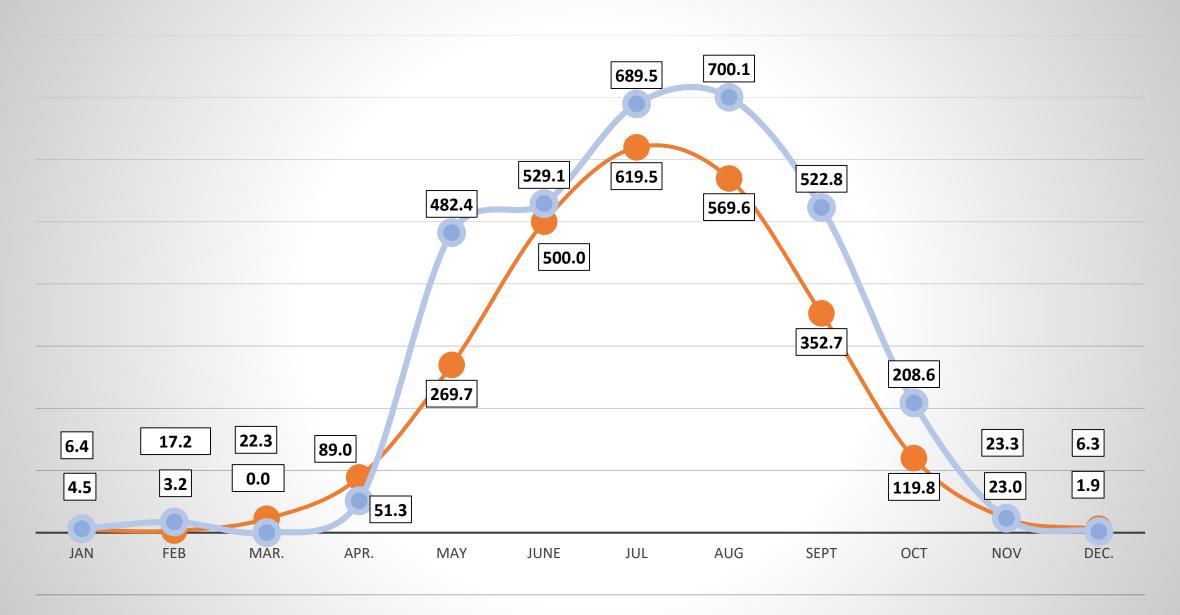
Predicted future impacts

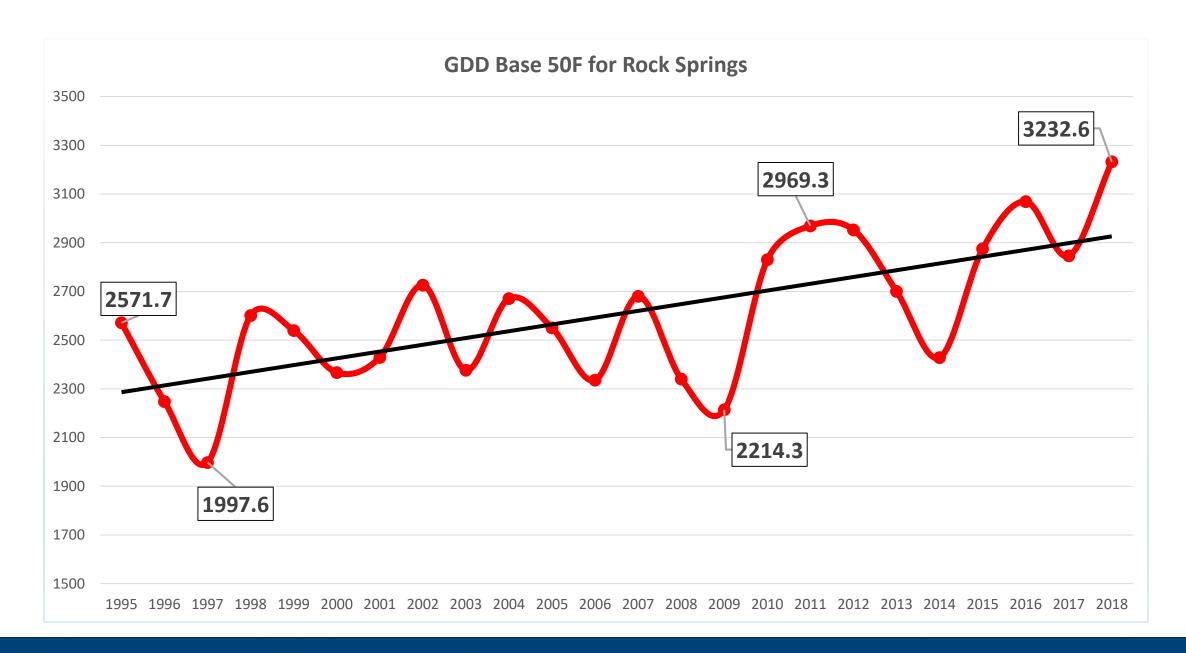

- Increased herbicide degradation due to higher temperatures along with increased leaching of materials into the ground water due to higher rainfall
 - from: Science of the Total Environment 514:239
 - How many made herbicide application this past fall?
 - 2018 Fall applied herbicides may not be as effective due to late season rain fall

Fruit Growth & Quality


Carbohydrates and Thinning

Fruit sugar levels





*Jan & Feb 2013 estimated

GDD Base 50F for Rock Springs

2018 Season Comments on Fruit

- Fruit disorders such as bitter pit and splitting was greater
 - Calcium uptake may have been reduced due to low light & transpiration
 - Excess soil moisture can lead to premature fruit ripening

Study of Stem – End Splitting in Apples

Factor or Mgmt. Practice	Level Associated with Increase	Degree of Association		
Irrigation/Rain fall	Frequent/Heavy	Definite		
Fruit Thinning	Low Crop Load	<u>Slight</u>		
N Fertilizer	No Effect	None		
Exposure to Sunlight	High Exposure (sudden change?)	Definite		
Fruit Size	Large Fruit	Definite		
Soluble Solids Content	High	Indefinite		
Flesh Textural Strength	Low	Definite		
Maturity Stage	Over Mature	Definite		
Mineral Deficiency	No Effect	None		

From T. Kon as adapted from Opara, U. L. 1993. A study of stem-end splitting in apples. Ph.D. Dissertation. Massey Univ. 293 pgs.

2018 Season Comments on Fruit

- Starch Index abnormalities
 - "Fuji samples continued to hang on the trees despite being devoid of starch"
 - Starch levels were lower and did not develop due to lower photosynthesis
- Cloudy weather
 - Reduces % soluble solids and starch levels in fruit
 - Starch Index tests may not be as reliable under current weather patterns
 - Best to use 3 tests: firmness, %SS and starch index

Good News from 2018 Season

- Learned where the potential for wet spots exist in your orchard
- In the future consider the need for installing drainage tile.

Rootstock sensitivity to wet soils

- Peach rootstocks very low tolerance (12- 36 hours?)
- Mahaleb, Mazzard very to extremely sensitive
- Pears are more tolerant to wet soils than most fruit crops
- Apple rootstocks may survive wet soils depending upon time of season, tree size, and soil pathogens
 - M.27 & M.9 are moderately tolerant to wet soils
 - MM.106 & MM.104 are not tolerant at all to wet soils

Geneva Rootstocks?

- Symptoms of water logging
 - Leaf wilting & browning (scorching)
 - Fruit drop & leaf chlorosis and leaf abscission
 - Stem dieback, limb dieback
 - Reduced nutrient uptake and visual deficiency signs
 - Decreased photosynthesis, transpiration

Questions Comments