Precision Farming: Progress with Sensing and Irrigation Technologies

Long He

Department of Agricultural and Biological Engineering Fruit Research and Extension Center

February 18st, 2019

Introduction

Why Precision Farming?

Source: United Nations, Department of Economic and Social Affairs, Population Division (2017). World Population Prospects: The 2017 Revision. New York: United Nations.

- Population increase
- More food required
- Less available resources
- Precision farming is needed

<u>Precision farming</u> aims to develop a decision support system to improve efficiency and optimize returns with minimal inputs.

Minimize Inputs

Water Use
Energy Consumption
Labor Needed
Environment Impact

Maximize Outputs

Production yield Crop Quality Efficiency

Precision Farming

Crop Sensing

- Sensors
- Cameras
- Drones
- Plants
- Soil
- Environment

Decision Making

- Data
- Models
- Expert
- Algorithms
- Network
- Interface

Field Operating

- Machinery
- Robotics
- Control system
- Autonomous
- Field operations

- Crop coverage detection
- Crop water stress detection
- Real-time crop load estimation
- Identification of pests and diseases infestation
- Soil mapping
- Crop nutrient deficiency detection

Crop Sensing

PennState College of Agricultural Sciences

In-Field Sensing

Soil moisture sensor @ Meter Group Inc

Soil nutrient sensor @ Re:char

UAV Based Sensing

Crop Sensing

Proximal Sensing

Phenotyping sensing platform (Washington State University)

Crop load estimation (Dr. Daeun Choi, Penn State)

Decision Making

Field Operating

Time to start/stop the irrigation /

From: Ozkan, E. 2018. (Ohio State University)

Importance of Irrigation

Necessity:

- Mandatory for dry and semi-arid area
- Supplemental for drought days/uneven rainfall in humid area

Proper irrigation:

- Increase yield
- Improve quality
- Conserve water
- Save energy
- Decrease fertilizer
- Reduce environmental impact

When to irrigate, and how much to irrigate?

Row 1 and 5: Conventional

Row 2 and 6: ET based

Row 3 and 7: CWSI based

Row 4 and 8: Soil moisture based

- Infrared thermal sensors (one at a location)
- Soil water content sensors (three)
- Soil water potential sensors (two)

Orchard for test – Tall spindle Fuji trees

Schematic illustration of the experimental setup

Evapotranspiration (ET)-Base Irrigation

Penman-Monteith Model (P-M)

- Reference ETo
- Estimated ET = Kc x ETo

When Transpiration + Evaporation > Precipitation, *Irrigation* is needed.

Soil Water Content-Based Irrigation

Soil Water Potential-Based Irrigation

TEROS 21 @ QTY 2

Canopy Temperature-Based Irrigation (Crop Water Stress Index)

$$CWSI = \frac{\Delta T_m - \Delta T_l}{\Delta T_u - \Delta T_l}$$

Evapotranspiration (ET)-Based Irrigation

Soil Water Content-Based Irrigation

Soil Water Potential-Based Irrigation

Canopy Temperature-Based Irrigation

Comparation of the Tested Methods

	ET-Based	Soil Moisture-Based	Canopy Temperature- Based	Combination
Advantages	Easy to applyNo in-field sensorsLow cost	Direct reading of soil moistureLow cost	Direct measuring plant stressCan be little bit costly	 ET + Soil Moisture Soil moisture + Canopy Temperature
Challenges	Estimated valueAccumulating errorYour own weather station	Root regionSensor locationSoil typeReal canopy stress	Targeted area of sensorClimate (too humidity)	

Water use?

Crop production?

3D Canopy Reconstruction

- Mechanical summer pruning
- Precision spraying
- Orchard platform auto guidance

Experimental Setup

Field Test with a Utility Vehicle

Point Cloud of a Tree Canopy

Planning Project

Precision Spraying Technologies for Pest Management

From: USDA-ARS Dr. Heping Zhu

From: DJI MG-1S Sprayer Drone

□ Activities

- Preliminary studies: pest/disease detection; variable rate sprayer
- Workshop/seminar: pest management, intelligent spraying, drone sprayer
- Seeking collaboration

☐ Funding Agency

State Horticultural Association of Pennsylvania (SHAP)
Penn State College of Agricultural Science
Penn State Extension

Collaborators

Daeun Choi, James Schupp, Paul Heinemann, Greg Krawczyk, David Biddinger, Kari Peter Tara Baugher, Daniel Weber

□ Field Setup/Data Acquisition

Azlan Zahid Lihua Zeng

Precision & Automated Agriculture

Thank you!

