

Spotted Lanternfly & Other Invasive Fruit Pests

David Biddinger, Greg Krawczyk, Julie Urban, & Heather Leach Penn State University Entomology

djb134@psu.edu

Major Tree Fruit Pests

Invasive

PENNSTATE

1855

Exotic Species in the US

PENNSTATE

- Invasive insects & weeds cost the US over \$122 billion/yr
- adding about 11 new species/year (7 important pests)
- Approx. 1,500 species currently.
- Make up 39% of the 600 major arthropod pests.
- Responsible for up to 50% of crop losses in CA.

Light brown apple moth

Light brown apple moth possible US distribution map

Figure 2. Climate match analysis for areas at risk for LBAM establishment. The results are reported in terms of frequency of years from 1999 to 2008 where enough degree days accumulated for LBAM to complete \geq three generations and non-lethal minimum daily temperatures >-16°C occurred.

http://www.aphis.usda.gov/plant_health/plant_pest_info/lba_moth/downloads/lbameconomicanalysis.pdf

Carrot Seed Moth - Pyralidae

African Fig Fly – Zaprionus indianus

Spotted Wing Drosophila

Multi-Colored Asian Lady Beetle

PENNSTATE

1855

Agricultural Perspective

PENNSTATE

1855

Brown Marmorated Stink Bug 2010 \$37 million loss in apple alone!

Social Perspective

Economic Loss

Some growers have experienced 50-60% loss of peach crops and 20% loss of apple crops.

2010 BMSB caused over \$37 million in damage to Mid-Atlantic apple production

Fresh injuries on stone fruit occurred during season (May, June, July)

Stink Bug injuries on apples during late summer

Brown marmorated stink bug (*aka Asian stink bug*) is not your usual insect pest

Hundreds of available host plants

Long distance movement ability (2 km)

Undefined biology/monitoring issues

Inconspicuous initial injury on fruit

Spends 80-90% of life outside of orchards

No current effective biological control

BMSB CONTROL

The impact of BMSB on seasonal insecticide applications; apple

Sc. – dinotefuran; Bl. – clothianidin; Dn.- fenpropathrin;

Ac. - thiametoxam; W. – lambda cyhalothrin; Br - bifenthrin

Brown Marmorated Stink Bug How we manage this pest?

Effective chemicals to date: **Pyrethroids and Methomyl –** Toxicity of Dinotefuron to NE's2 vears \bigcirc 10 +

Systems Affected

- San Jose Scale
- Wooly Apple Aphid
- Mites

Woolly Apple Aphid Parasitoid Aphelinus mali

Quadraspidiotus perniciosus

Typhlodromus pyri

Raff Block Overwintering ERM Eggs

10 twigs/tree (4 reps)

Most effective insecticides against BMSB

Mixes such as Endigo or Leverage

SWD Identification – key characters

NE IPM – Urgent IPM Grant 2011

Male SWD with wings that exhibit faint spots. About 15% of SWD males have either faint spots or lack them altogether. Note that the front leg (upper right corner) has the two black bands. This characteristic is exhibited by all SWD males.

This picture showcases the saw-like ovipositor of a female SWD. This allows the SWD females to lay eggs in ripening fruit. SWD females do not have wing spots or black bands on their legs like males do.

D Bic

SPOTTED LANTERNFLY IN PENNSYLVANIA

Sven-Erik Spichiger, Entomology Program Manager

pennsylvania DEPARTMENT OF AGRICULTURE

PennState

APHIS

USDA

pennsylvania DEPARTMENT OF CONSERVATION AND NATURAL RESOURCES

Spotted lanternfly

NEW INVASIVE PEST

Native to Asia, found in southeastern PA in 2014

Now spread to 4 states and detected in 3 additional states

Internal state quarantine areas.

SPOTTED LANTERNFLY IN PENNSYLVANIA

Sven-Erik Spichiger, Entomology Program Manager

Adults: July - December

Egg Laying: September - November

Eggs: October - June

Fourth Instar: July - September

One Generation Per Year

Hatch and 1st Instar: May - June

Third Instar: June - July

Second Instar: June - July

Early versus Late Season Females

- -- Adults appear: late July
- -- Females lay eggs: October November

SLF is a Hemipteran

How does SLF feed?

SPOTTED LANTERNFLY

Feeds on plant sap through a piercing-sucking mouthpart

Excretes honeydew (sugar water) as it feeds

Honeydew and sooty mold

SLF are serious troublemakers

High populations of SLF in SE PA

Video by Christopher Jordan

SLF in backyards and chimneys

Sooty mold – a nuisance problem

SLF in orchards

SLF in vineyards

- Increased # of sprays by 10
- Insecticide costs increase 271%
- Decreased yield & sugars
- Winter vine death
As the population of spotted lanternfly grows, and the insect adapts, new threats to multiple industries emerge.

Biggest threat is to forestry & ornamentals.

In tree fruit, peach appears to be most at risk, but will attack apple.

Need insecticide efficacy & residual data to develop control programs & integrate into IPM.

SLF host range

HOSTS Preferred host is invasive tree, tree-of-heaven Feeds on over 70+ hosts including hardwoods, vegetables, tree fruit, hops, and grapes Feeding not recorded on conifers

Identification of tree-of-heaven

TREE of HEAVEN

Male and female trees

Reproduces by seed (samaras) or by "clones"

Bark has appearance of cantaloupe skin

Few other animals are recorded on tree-ofheaven

Identification of tree-of-heaven

TREE of HEAVEN

Pinnately compound leaves 1-4 feet in length 10-40 leaflets 1-2 teeth at base of leaflet Smooth leaf margin Rotten peanut butter odor when crushed

Tree-of-heaven populations in PA

Data courtesy of Dr. Dennis Calvin (Penn State) and Pennsylvania Department of Agriculture

SPOTTED LANTERNFLY IN PENNSYLVANIA

Sven-Erik Spichiger, Entomology Program Manager

Spotted Lanternfly Presence

- Positive
- Negative

What's being done to control SLF?

CONTROL

PA Dept. Agriculture focusing in "core" of population

USDA focusing on 18-km **buffer** outside of core population

What's being done to control SLF?

CONTROL

Tree-of-heaven being utilized as trap tree

Majority of trees killed, remaining trees are treated with systemic insecticide

What's being done to control SLF?

SPREAD

All businesses transporting material within or in and out of the PA/NJ quarantine counties are required to have SLF permit

SLF egg masses

EGG MASSES

Eggs are laid on any hard surface (vines, trunks, posts, stones, houses, lawn furniture, etc.)

They are laid in fall, overwinter, and hatch in the spring

In PA, average number of eggs per mass was 37.3, while the maximum was 78 (E. Smyers data)

Old egg masses

New egg masses

SLF egg masses

SLF Egg Masses on Red Maple Trees

SLF egg masses on Christmas trees

Field ovicide assays

Data provided by Greg Krawczyk

SLF insecticide trials, homeowners

Active Ingredient	Mode of Exposure	Available Products	Legal Use	Activity Against SLF	Residual Activity
bifenthrin	contact	alstar P ornamental and landscape plants and trees		excellent	excellent
carbaryl	contact	Garden Tech Sevin Ready-to-Spray Bug Killer (note: new formulation is sold with zeta-cypermethrin)	vegetable and ornamental plants and trees under 10 feet tall	excellent	good
dinotefuran	systemic/contact	Safari 20SG, Transect 70 WSP, Zylam Liquid	ornamental and landscape plants and trees	excellent	excellent
insecticidal soaps*	contact	Garden Safe Insecticidal Soap	vegetables, fruit trees, ornamentals, shrubs, flowers, and gardens	good	poor
malathion	contact	Spectracide Malathion Insect Spray	flowers and bushes, fruit, and vegetables	excellent	poor
natural pyrethrins	contact	Garden Safe Multi-Purpose Garden Insect Killer, Natria Insect Mite and Disease Control	vegetables, ornamentals, trees, shrubs, and flowers	excellent	poor
neem oil*	contact	Bonide Neem Oil	flowers, ornamental trees and shrubs, fruit, nuts, and vegetables	good	poor
spinosad*	systemic	Bonide Captain Jack's Deadbug Brew	outdoor ornamentals, fruit, and vegetables	fair	poor
tau-fluvalinate, tebuconazole	contact/systemic	BioAdvance 3 in 1, Insect, Disease and Mite Control	nonedible plants only, groundcovers, vines, ornamentals, shrubs, and trees	excellent	good
zeta-cypermethrin	contact	Amdro Quick Kill Outdoor Insect Killer Concentrate	lawns, trees and shrubs, roses, and flowers	excellent	excellent

*Recommended for organic production.

Note: The listing of products in this table is not an endorsement or specific recommendation of the product or the company. Other products with the same active ingredient should also work in the same way, but they may have different rates or formulations.

SLF insecticide trials

Nymph SLF insecticide trials (on peach)

Trade name	Active ingredient	Class	Rate per acre	Systemic, Contact, Ingestion	PHI (days)	REI (hrs)	Days of activity	Labeled for SLF?	SLF activity
Imidan 70WP	phosmet	Organo- phosphate	2 1/8 lb	C, I	14	336	14	Yes, 2(ee)	Exc.
Scorpion 35SL	dinotefuran	Neonicitinoid	5 fl oz	S, C, I	1	12	7	2(ee) pending	Exc.
Brigade 10WSB	bifenthrin	Pyrethroid	16 oz.	C, I	30	12	14	Yes, 2(ee)	Exc.
Mustang Maxx 0.8EC	zeta- cypermethrin	Pyrethroid	4 fl. oz.	C, I	1	12	<7	Yes, 2(ee)	Exc.
Closer 2SC	sulfoxaflor	Sulfoximine	5.75 fl oz.	S, C, I	7	12	7	2(ee) pending	Good
Actara 25WDG	thiamethoxa m	Neonicitinoid	3.5 oz	S, C, I	5	12	7	Yes, 2(ee)	Exc.
Assail 30SG	acetamiprid	Neonicitinoid	5.3 oz	S, C, I	3	48	<7	Yes, 2(ee) on nymphs only	Good
Carbaryl 4L	carbaryl	Carbamate	2 qt	C, I	7	12	7	No	Exc.
Avaunt 30DG	indoxicarb	Oxadiazine	6 oz	C, I	7	12	7	Yes, 2(ee)	Exc.
Movento 2SC	spirotetramat	Ketoenol	9 fl oz	S, C, I	7	24	7	No	Poor
Danitol 2.4EC	fenpropathrin	Pyrethroid	21.33 fl oz	C, I	21	24	7	No	Exc.
Entrust 80WP	spinosad	Spinosyn	2.5 oz	С, І	7	4	<7	No	Poor
Sivanto Prime 1.67SC	flupyradifero ne	Butenolide	14 fl oz	S, C, I	0	4	<7	No	Poor

Adult SLF insecticide trials (on grape)

Trade name	Active ingredient	Class	Rate per acre	Systemic, Contact, Ingestion	PHI (days)	REI (hrs)	Days of activity	Labeled for SLF?	SLF activity
Imidan 70WP	phosmet	Organophosphate	2.125 lb	C, I	14	336	0	Yes, 2(ee)	Poor
Imidan 70WP	phosmet	Organophosphate	1.33 lb	C, I	7	336	0	Yes, 2(ee)	Poor
Scorpion 35SL	dinotefuran	Neonicitinoid	5 fl oz	S, C, I	1	12	<14	Yes, 2(ee)	Exc.
Brigade 10WSB	bifenthrin	Pyrethroid	16 oz.	C, I	30	12	21	Yes, 2(ee)	Exc.
Mustang Maxx 0.8EC	zeta- cypermethrin	Pyrethroid	4 fl. oz.	C, I	1	12	<7	Yes, 2(ee)	Good
Closer 2SC	sulfoxaflor	Sulfoximine	5.75 fl oz.	S, C, I	7	12	0	2(ee) pending	Poor
Actara 25WDG	thiamethoxam	Neonicitinoid	3.5 oz	S, C, I	5	12	<21	Yes, 2(ee)	Exc.
Assail 30SG	acetamiprid	Neonicitinoid	5.2 oz	S, C, I	3	48	0	Yes, 2(ee) on nymphs only	Poor
Carbaryl 4L	carbaryl	Carbamate	2 qt	C, I	7	12	<14	No	Exc.
Avaunt 30DG	indoxicarb	Oxadiazine	6 oz	C, I	7	12	0	Yes, 2(ee)	Poor
Admire Pro	imidacloprid	Neonicitinoid	1.4 fl oz	C, I	0	12	<7	No	Poor
Venerate XC + Nu-Film P	<i>Burkholderia</i> <i>spp.</i> strain	Other	4 qt	C, I	0	4	0	No	Poor
Entrust 80WP	spinosad	Spinosyn	2.5 oz	C, I	7	4	0	No	Poor
Sivanto Prime 1.67SC	flupyradiferone	Butenolide	14 fl oz	S, C, I	0	4	0	No	Poor

- 1. SLF adults appear to be harder to kill w/ insecticides than nymphs, but less tolerant of heat, so higher control mortality.
- 2. The lower rates for grapes are less effective and give shorter residual.
- **3.** Need to integrate efficacy, residual, PHI, REI and varying rates into control recommendations for each crop and generate more 2(e) label amendments.

4. Test slower acting compounds (esp. IGRs) that can disrupt development and affect reproduction, but are more IPM compatible and bee safe. https://extension.psu.edu/spotted-lanternfly

SLF endemic parasitoids

Brown Marmorated SB (*Halyomorpha halys*) vs. Predatory SBs

UGAJ

DJB-2005

UGA124209

Management of Invasive Pests Begins with a Reliance on Insecticides, but there is hope of native biocontrol!

THUS The effect of low levels of mortality on population growth

The population model is started using 16 fertile female coelling moths. We can the model twice, the first time using mortality rates observed in the laboratory (the control) and the second time using the same mortality rates but with an additional 25 percent mortality at the larval stage, to simulate natural-enemy induced mortality. We then plotted the size of the control population and the one with the additional larval mortality.

Both populations increase rapidly, but the one with 25% morality added increases slower than the control population. After a single generation, there are 44% fewer individuals in the population and after two generations 68% fewer in the 25% mortality treatment compared with the control.

The effect in each generation is the result of not only killing the additional 25% of larvae, but also eliminating all the progeny of those individuals. Another way to think of this is that the additional mortality acts similarly to compound interest in a savings account. As the savings grow because of interest paid, the greater the interest earned the following period.

* V. Jones, T. Unruh, D. Horton, & J. Brunner. Improving Apple IPM. Good Fruit Grower. Dec. 2006.

Bicyrtes quadrifasciata – Sand Wasp

Trichopoda sp.

Tachinid Parasitoids of Adult Stink Bugs

Gymnosoma sp.

Tachinid Egg

Trissolcus basalis Scelionidae

Stink Bug Egg Parasitoid

UC Statewide IPM Project © 2000 Regents, University of California

SPOTTED LANTERNFLY IN PENNSYLVANIA

Sven-Erik Spichiger, Entomology Program Manager

Lycorma delicatula (WHITE):

A Planthopper in the Family Fulgoridae

696 Species of Lanternflies in the world

Only 17 species in North America

Like most planthoppers, Lycorma pierce the stems of plants, trees, and vines and feed on phloem.

SLF predators

Generalist predators are attacking SLF in the U.S. This is unlikely to control the SLF population

SLF endemic parasitoids

Ooencyrtus kuvanae

Gypsy moth parasitoid, introduced in 1908

Not reported on SLF in China

Found ~7% parasitism of available egg masses

~20% of egg mass parasitized

Only found in some locations

Fungal pathogens on SLF

FUNGAL PATHOGENS

Beauveria sp. found attacking SLF nymphs and adults in PA population

Too early to determine species or use as a control method

Dr. Ann Hajek

Fungal pathogens on SLF

FUNGAL PATHOGENS

Fungi closely related to *Entomophaga* sp. found attacking SLF adults in PA population

Species is unknown, but believed to be related to gypsy moth fungal pathogen

Dr. Ann Hajek

Classical Biological Control

- actively practiced in the US for about 100 years.
- about 2300 introductions worldwide have provided complete control in about 100 cases.
- Success in about 16-34% of attempts.

Foreign exploration for parasitoids in China

Anastatus orientalis

Only egg parasitoid recovered (to date)

A. orientalis is widely distributed throughout China

Parasitism ranged from O-92% of egg masses (those with any eggs attacked) and from O- 26% total eggs

In quarantine at APHIS (Otis, MA)

Data courtesy of Kim Hoelmer & Juli Gould

Foreign exploration for parasitoids in China

Dryinus sp. nr. browni

Attacks 2nd and 3rd instars

Late stage parasitoid larvae make protective sac in nymph

Overwinter in cocoon

40% parasitism reported in Chinese literature

June 2018 collection in China; now at ARS quarantine lab

Data courtesy of Kim Hoelmer & Juli Gould

Spotted Lanternfly → one word

THANK YOU!

https://extension.psu.edu/spotted-lanternfl

DEPARPMENT OF AGRICULTORE

