

APPLE PHYSIOLOGY – BLOOM TO HARVEST USE OF PGR'S & OTHER TIPS

OR WHY DOES THIS HAPPEN?

Penn State Extension

Increasing Branching

- Several products
 - 6-BA (Maxcel, Exilis, RiteWay)
 - BA + GA (Promalin, Perlan, Typy)

- Two Timings
 - Dormant
 - Early shoot growth

5000 ppm MaxCel in latex paint

Branching

- Latex application
 - -5,000 ppm = 0.2 0.33 pint/pint latex paint
 - When buds begin to swell before shoots emerge
 - *Day after planting
- Foliar application
 - -250-500 ppm = 16 fl. oz./10 gallon
 - 3-4 applications @ 28-30 inches of growth, 2-3 x

Pollination & Crop Regulation

Pollination by flower type

- **King flowers**: open earlier with high stigmatic receptivity but shorter length (speed skater)
- Lateral flowers: Open later but have longer stigmatic receptivity (cross country skier)

Penn State Extension

Environmental Influences

- Lower temperatures extend ovule longevity but result in slower pollen tube growth
- Warmer temperatures reduce stigma receptivity and increase ovule degeneration

The Disease Triangle

Equilateral Plant Disease Triangle with 3 necessary casual factors of disease

What causes russeting of fruit?

- Can be caused by
 - Fungi or yeasts on fruit surface
 - Insect feeding
 - Frost around bloom
 - High humidity & precipitation @ 15-20 DAFB
 - Crop protection materials

Cuticle

Epidermis

2 or 3 cell deep 6 – 10 cells deep

Anatomical changes

- Abnormal development of waxy layer covering epidermal cells (known as cuticle)
- Weakness leads to micro-cracks in cuticle
- "Cracks" expand further with fruit enlargement
- Cells beneath "cracks" exposed to air forming corky tissue (cambial) to form
- Reference

http://www.tfrec.wsu.edu/pages/cpg/Leaf Injury

Penn State Extension

Reducing russet

- Multiple sprays of GA products
 - —Provide® Gibberellins A₄A₇
 - –Novagib 10L Gibberellins A₄A₇

Over cropping Reduced Flowering

Penn State Extension

Individual apple fruiting spur

Hormone level changes influencing flower formation

A Recent Study Found:

- Auxin content increased then decreased
- Cytokinin decreased thru season
- Gibberellin level then decreased
- Abscisic acid increased thru out season

Growth Stage

Xing et al. 2015 Plant Cell Physiol 56:2052

Penn State Extension

Role of Spur Leaves, Bourse Leaves and Fruit on Flowering

- Honeycrisp vs. Gala
 - Biennial vs. Annual cropping
- Seeds vs. Leaves
 - Seeds as a source of GA's
 - Leaves provide flower promoting compounds
- Bourse shoot leaves (BL) vs. Spur leaves (SL)
 - BL are essential for flower formation
 - SL are not need for flower formation
- Whole tree effect
 - Overcome local inhibiting effects

Elsysy & Hirst HortSci 53:1229

Tips to Influence Flowering

- Prohexadione calcium to reduce growth
 - Apogee / Kudos
 - Better light
- NAA products
- Ethephon products
- Gibberellic Acid
 - To reduce flowering
 - ProGibb LV Plus
 - Stone fruits

For Growth Reduction

For Growth Enhancement

Enhancing Return Bloom

- Apply multiple sprays 7-10 days apart when fruit diameter is >30mm
- Materials
 - NAA
 - Fruitone L, Fruitone N, Pomaxa, Refine 3.5WSG
 - 5 ppm x 3 applications
 - Ethephon
 - Ethephon 2, Ethrel, Motivate
 - 8 oz/A
 - 2-3 applications

Increasing flower formation

- Ethephon
 - stronger material
 - avoid early ripening cultivars (≤ McIntosh)
 - non-being young trees can use a higher rate
 - do not apply during high temperatures >85F

Fruit Quality Physiology

Have You Seen This?

Preharvest Influences on Watercore

- Fruit maturity
 - Over mature
 - Late harvest
 - Cool growing season
- Calcium levels in fruit
- Exposure to high fruit temperature
- Light crop load

Watercore

Physiological disorder where cell walls break down and cell contents 'leak' into intercellular spaces

High Temperature

Over Maturity

Penn State Extension

Types of Sunburn Damage

 Sunburn browning – most common as yellow, brown or dark tan; due to UV-B radiation and high temperature

Types of Sunburn Damage

 Photo-oxidative sunburn – due to sudden exposure to sunlight after growing in the shade; due to limb repositioning, NOT due to UV-B or high temperatures; can also occur on fruit at top of bins.

Penn State Extension

To Reduce Sunburn

- Kaolin based sprays (Surround)
- <u>Pureshade</u>® (calcium carbonate)
- Raynox Plus[®]
- Shade netting
- Evaporative cooling

Fruit Color Development

Apple Skin Color Depends on Blends of Pigments

- Chlorophyll: in chloroplasts green
- Carotenoids: in chloroplasts and chromoplasts - yellow, orange
- Anthocyanins: in vacuoles red, purple, blue

As Apples Ripen

- Chlorophyll is degraded and carotenoids increase in chloroplasts
- Anthocyanins increase up to 5-fold
- Under non-conducive conditions for anthocyanin development, anthocyanin may be destroyed and precursors shunted to other pathways
- Chlorophyll may not degrade as rapidly

Light

- Triggers genes involved in anthocyanin accumulation
- Sugars needed to convert precursors to anthocyanin
- Depends on stage of development Mature
 'McIntosh' require longer exposure than early harvest
- Critical level depends on cultivar and stage of development
- Blue-violet and UV wavelengths are most important to color development

Can Fruit Lose Color?

- Not Really
- Environment and Light Trigger;
 - Increase in chlorophyll production
 - Reduced production of anthocyanins
 - Increased respiration leads to lower production

Other Factors Orchard Nutrition

- Late-season high N inhibits anthocyanin accumulation, also increases shade
- High N causes precursors of anthocyanin to be converted to proteins rather than phenylalanine
- Deficient K inhibits anthocyanin accumulation, applications may partially compensate for high N
- Effect of other elements are inconsistent

High Leaf Nitrogen = Poor color

Lailiang Cheng

Crop Load – Watkins, Cornell Univ.

Fruit/ cm trunk cross sectional area

Other Factors

- Water stressed trees develop poor color due to low sugars, high temperatures
- Wounding increases color due to ethylene
- Detached fruit color better than on tree
- Some evidence that fruit on dwarf rootstocks color better but it is not totally due to light

Enhancing Light

- Summer prune about 2 weeks before harvest
- Reflective mulch

Altering Physiology of Fruit Drop

MCP

- SmartFresh or Harvista
- Inhibits ethylene action
- Binds irreversibly to ethylene receptors making fruit unable to respond to ethylene
- May also
 - delay red color,
 - starch degradation,
 - delay watercore development

ReTain

ReTain®
PLANT GROWTH REGULATOR
SOLUBLE POWDER

- AVG (aminoethoxyvinylglycine)
- "look-alike" for precursor to ethylene and binds irreversibly with that precursor & prevents <u>production</u> of ethylene
- Natural ripening process is slowed including:
 - stem loosening
 - fruit softening
 - starch disappearance
 - red color formation

