Soils are the main contributor of N₂O emissions to the atmosphere. N₂O is a long-lived greenhouse gas with each molecule of N₂O having a direct global warming potential 298 times that of a single molecule of CO₂. Controls on N₂O emissions, including physical, chemical, and biological factors, can affect its production in the soil and its transport through the soil-atmosphere system. Soil O₂ is a key determinant of the microbial processes responsible for N₂O fluxes. Thus, identifying and quantifying sources of N₂O and O₂ in soils is an important aspect of accurately assessing the fluxes of N₂O to the environment. The high spatial and temporal variability of N₂O emissions from soils, however, has made it difficult to predict patterns of N_2O flux at the ecosystem scale. Considerable work has focused on measuring N₂O fluxes from the soil surface, with less attention given to the dynamics of N₂O in the subsoil. Landscape and topography also play a crucial role in N₂O distribution because of the control they exert on water availability, and consequently on O₂ availability. In order to evaluate the direct and indirect fluxes of N₂O to the atmosphere, understanding the fate of N₂O in the subsoil is essential. This is a proposal to mechanistically resolve the heterogeneity problem associated with modeling N₂O by measuring the depth distribution of N₂O and O₂ in soils along an established landscape gradient in a wellmonitored ecosystem.