Below Ground Regulation of Stress Response Genes in Hybrid Poplar

Joshua R. Herr

Schatz Center for Tree Molecular Genetics, School of Forest Resources, The Pennsylvania State University, USA

Presentation Outline

- Introduction to Below-Ground Fungal Associations of Trees
- Navigating Multiple Stress Responses in Hybrid Poplar
 - Abiotic (Ozone) and Biotic (Insect Herbivory)
 - Microarray and RT-PCR Gene Expression Changes
 - Understanding the Role of Jasmonic Acid in Stress Response
- Understanding Stress Responses in Hybrid Poplar Biomass Plots
 - Tree Spacing, Growth, and the Use of 1-MCP (ethylene blocking agent) in Stress Response
 - Soil Metagenomics of Poplar Biomass Plantations
- Final Conclusions and Acknowledgements

Presentation Outline

Introduction to Below-Ground Fungal Associations of Trees

Original Goal of the Study was to address the role of Ectomycorrhizal Fungi in mediating responses to both Ozone (Teo Orendovici-Best) & Insect Herbivory (Christopher Frost). I found that mycorrhizal root quantification and fungal volatiles may have been problematic.

- Tree Spacing, growth, and the Use of 1-MCP (ethylene blocking agent) in stress response
- Soil Metagenomics of Poplar Biomass Plantations
- Final Conclusions and Aknowledgements

Ozone Study Outline

Introduction

- Brief Introduction to Ozone Pollution
- Our Observations and Preliminary Data Regarding Ozone Toxicity

Methods

- Interactions of Ozone Toxicity and Herbivory
- Experimental Design

Results

- Herbivore-Ozone Transcriptome Changes in *Populus*
- Microarray and RT-PCR Gene Expression Changes Associated with the Jasmonic Acid (JA) Pathway
- Functional Studies and Phylogenetics of JA Pathway Genes, a Unique Biochemical Bottleneck, in *Populus*

Ozone stress

Penn State University

From: Nicholas, N.S., P.F. Brewer and D.A. Weinstein. 2000. *An Assessment of Ozone Effects in the Southern Appalachians Using a Multi-Stakeholder Process*. Paper 463. Presented at the Air and Waste Management Association Annual Meeting, June 18-22, Salt Lake City, Utah.

Populus genotypes can be sensitive to Ozone in the field

Populus Hybrid NE-245

Increasing Ozone concentrations

Genotypic variation in susceptibility to ozone

introduction

methods

results

discussion

Ozone Induced Gene Expression Changes – Initial Observations

- Populus hybrid NE-245 highly suceptible to ozone fumigation
- Decrease in *GR* (Glutathione Reductase) gene expression, Increase in *AtoZi* (*Arabidopsis thaliana* ozone induced gene 1; Sharma & Davis 1995)

Genotypic variation in acidic phytohormone responses to ozone

Orendovici-Best et al. (submitted)

introduction methods

results

discussion

Jasmonic Acid mediates induced resistance to herbivores

- JA pathway has been commonly used to measure a plant's ability to respond to both abiotic and biotic stimuli in *Arabidopsis*.
- JA mediates many plant defense responses, VOCs, secondary metabolites, other plant hormones, etc...

Interactions of Herbivory and Ozone?

- Microarrays
- Metabolomics (1° and 2°)
- Functional Genomics
- Soil and Microbial Interactions

Experimental Design

- •Plants subjected to ozone fumigation for 1 week (control 30 ppb, treatment 80 ppb ozone).
- Sign of first symptoms, 24 hour with 10 gypsy moth caterpillars, then leaves collected
- RNA extracted, cDNA library constructed, NimbleGen Poplar array used.

4 plants per fumigation chamber, 16 chambers.

Microarray Analysis of Ozone, Insect Herbivory, and Mycorrhizal Infection on *Populus*.

Abiotic and biotic stress responses, as well as mycorrhizal infection, modify plant gene expression.

Ozone compromises induced responses to herbivores

Transcriptome changes compromised

Herbivore-induced transcriptome influenced strongly by ozone

Ozone-induced transcriptome NOT influenced strongly by herbivory

Ozone compromises induced responses to herbivores

Transcriptome changes compromised

Herbivore treatment plants

Ozone mitigates herbivore-induced responses

Phenylpropanoid pathway

Ozone compromises induced responses to herbivores

Jasmonate synthesis

Molecular Phylogenies of JA pathway genes in *Populus*

LOX: At=6; Pt=20

Populus Arabidopsis

- Phylogeny shown constructed with genes from Arabidopsis thaliana, Populus trichocarpa, Glycine max, and Medicago truncatula.
- Over 400 genes for plants with sequenced genomes.
- Large "LOX family" contains
 α-DOXs, Lipases, and large
 numbers of LOX genes.

Herr et al. in prep

introduction

methods

results

discussion

Gene expression data (qRT-PCR) for AOS in specific Poplar tissue types. Gene expression studies were carried out in hybrid poplar (OGY: *P. deltoides* x *P. nigra*).

GUS-AOS reporter assay - 0 hours after wounding (collected immediately before fixing)

Unwounded companion

Stained immediately

Fixed after 1 minute

GUS-AOS reporter assay – 1 to 2 hours after wounding (collected immediately before fixing)

Unwounded companion

Fixed after 1 hour

Fixed after 2 hours

GUS-AOS reporter assay – 6 to 24 hours after wounding (collected immediately before fixing)

Unwounded companion

Fixed after 6 hours

Fixed after 24 hours

Populus AOS promoter elements

Molecular Phylogenies of JA pathway genes in *Populus*

LOX: At=6; Pt=20

AOS: At=1; Pt=2

HPL: At=1; Pt=1

DES: At=0; Pt=3

- Still more work needs to be done to understand oxylipin diversity, especially in *Populus*.
- Current focus is the elicudation of tissue specific expression in *Populus*.

Herr et al. in prep

introduction meth

methods

results

discussion

Populus HPL promoter elements

Synopsis for the Primary Step in Oxylipin Synthesis

Role of Ectomycorrhizae in Poplar Ozone fumigation.

- Mycorrhizal (*Laccaria bicolor*) and Non-Mycorrhizal poplar were established and mycorrhizal root tips were counted in all of the plants after the experiment (70% root infection in mycorrhizal plants)
- There are 3 orthologs of the CYP74 family in *Laccaria*. How volatiles from *Laccaria* affect poplar gene expression is unknown.

Relative AOS expression in mycorrhizal & nonmycorrhizal plants

- Orthologs exist in many other fungi and bacteria (Keller et al 2009).
- We know that Ozone increases the volatility of plant isoprenes, products from CYP74s are very similar (Loreto et al 2001, Sharkey et al 2008).

Molecular Phylogenies of JA pathway genes in

Populus

LOX: At=6; Pt=20

AOS: At=1; Pt=2

AOC: At=4*; Pt=3

* Tandem duplication

- AOC1 genes involved in JA pathway for each *Arabidopsis* and *Populus*. No AOC2 in *Arabidopsis*.
- AOC2 in *Populus* appears to be
 expressed during root
 and pollen
 development.

Herr et al. in prep

introduction methods

Peroxisome

JA

results

discussion

Immediate Research Directions

- Insect growth quantification on both ozone fumigated and non-fumigated *Populus* (Reviewer Requested).
- Microarray Run or Re-trial of Laccaria-Populus Ozone experiment?
- Further Characterization of the Jasmonic Acid pathway in *Populus* (Reviewer Requested, qRT-PCR data validation)
- Below-ground community structure across high vs. low ozone sites?

Presentation Outline

- Introduction to Below-Ground Fungal Associations of Trees
- Navigating Multiple Stress Responses in Hybrid Poplar
 - Abiotic (Ozone) and Biotic (Insect Herbivory)
 - Microarray and RT-PCR Gene Expression Changes
 - Understanding the Role of Jasmonic Acid in Stress Response
- Understanding Stress Responses in Hybrid Poplar Biomass Plots
 - Tree Spacing, Growth and the Use of 1-MCP (Ethylene Blocking Agent) in Stress Response
 - Soil Metagenomics of Poplar Biomass Plantations
- Final Conclusions

Hybrid Poplar Biomass Field Study

- Study Consists of Test of Tree Spacing, Treatment of Ethylene Blocking Agent 1-MCP, and Presence of Nitrogen Fixing Biomass Tree (Black Locust, Robinia) on Poplar Biomass Production
- Thirty Plots Covering Two Sections of Marginal Farm Land (15 each for Spacing only / Black Locust and Spacing). Half of the Plots From Each Section Receive 1-MCP
- Measurements Include: Biomass Production (Ethanol Conversion), Role of 1-MCP in Digestibility and Stress Mediation, Plant Growth Characteristics, Soil Microbe Composition and Change

spacing regimes.

Figure 3 – Average LAR (leaf area removed) from herbivory at three plant spacing regimes.

Figure 4 – Average number of leaves per tree at three plant spacing regimes.

Future Research Directions for Biomass Plantations

- Growth characteristics in relation to biomass production.
- Growth characteristics and changes in plant phenology in biomass plots with/without 1-MCP.
- Below-ground community structure within tree spacing and 1-MCP treated plots.
- Impact of plant succession on below-ground microbial components and vice versa.
- Insect diversity and leaf area damage.

Photo: Marc Buee

Metagenomics of Forest Soils in Brueil

- Expansion of the Buee et al 2009 New Phytologist) test study.
- Sampling in six forest types (five 30year old monoculture plots, One "undisturbed plot")
- Each plot has 30 years of geochemical data and 10 years of soil respiration measurements to accompany our sampling
- Six random samples from center of plots
- Six types include: Mixed Hardwoods ("Undisturbed" site: mainly Beech & Oaks), Douglas Fir (*Pseudotsuga*), Norman Fir (*Abies*), Oak (*Quercus*), Beech (*Fagus*), and Pine (*Pinus*)
- Sampling done seasonally (spring & autumn)

Future Research Directions

- Metagenomics of Ectomycorrhizal Communities.
- Gene expression of "key" gene in forest and biomass plantation soils.
- Comparative genomics of Fungi and Plants (Ectomycorrhizal Fungi in particular).
- Symbiotic associations of host specificity in Ectomycorrhizal Symbioses.

Acknowledgements

Carlson Lab/Schatz Center (Penn

State): John E. Carlson, Teo Orendovici-Best, Tyler Kane Wagner, Paul Lupo, Anushree Sengupta, Chien-Chi Chien,

CJ Tsai Lab (University of Georgia):

Microarray Analysis Instruction Christopher J. Frost

Haying Liang Lab (Clemson):

Haying Liang (GUS Reporter Advice)

The Schatz Center for Tree Molecular Genetics

Funding Sources:

The Schatz Center for Tree Molecular Genetics.

USDA JGI Poplar Biology Grant to John Carlson and Christopher Frost (Microarrays)

Funding from NIFA-USDA Microbial Genomics Fellowship and Joint US/EU PUF Fellowship and Research Exchange.

PENNSTATE College of Agricultural Sciences

School of Forest Resources

Thank you!

Merci Beaucoup!