// When used in ImageJ, this macro will open a batch of photos of apples and
// calculate the percentage of the apple fruit covered by blush according to
// a blush threshold entered below. Note that the image should be
// colorimetrically corrected for maximum accuracy. Note also that a
// mathematical relationship should be worked out between the hue value in
// HSV and the hue value in the color space you are working in. HSV is not
// device-independent, so if working in CIELAB LAB, you will need reference
// color chips to develop this relationship. If working with .tiff, activate
// the line beginning run("Stack to RGB") by removing the "//" marks at the
// beginning of the line. Also, if working with .tiff images deactivate the
// first close(); command by removing "//."

macro "Apple Blush Calculator" {
 dir = getDirectory("Choose a source file that contains images");
 list = getFileList(dir);
 setBatchMode(true);
 for (i=0; i<list.length; i++) {
 path = dir+list[i];
 open(path);
 //run("Stack to RGB"); // this line is necessary if your image
 //is .tiff format (rather than .jpg)
 changeValues(0,0,255); // this changes the background values
 //to very high hue angle blue, which can be classified as
 //non-data
 run("Color Transformer", "colour=HSV");
 changeValues(0.8,1,0); // classifies very high hue angle blush
 //as 0
 changeValues(0,0.0187,0); // classifies low hue angle blush
 //as 0. This line should be changed (the value 0.0187) to
 //match the blush threshold of your system.
 changeValues(0.001,0.6,1); // classifies high hue angle
 //non-blush as non-blush
 changeValues(0.6,0.67,0.30); // classifies background as 0.30
 run("8-bit");
 blush = 0;
 nonblush = 255;
 getHistogram(0, hist, 256);
 total = 0;
 for (j=0; j<256; j++)
 total += hist[j];
 //print(""");
 //print("Blush pixels: " + hist[blush]);
 //print("Non-blush pixels: " + hist[nonblush]);
 //print("Blush to non-blush ratio: " +
 //hist[blush]/hist[nonblush]);
 print(path);
 print("Percent Blush:
 +hist[blush]/(hist[blush]+hist[nonblush])*100);
 // close(); // this line is necessary if your original image is
 //.tiff format (rather than .jpg)
 close();
 }
}

Page 1